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ABSTRACT

Optimal BeamFormers (BFs) that maximize the Weighted Sum Rate
(WSR) for a Multiple-Input Multiple-Output (MIMO) interference
broadcast channel (IBC) remains an important research area. Under
practical scenarios, the problem is compounded by the fact that only
partial channel state information at the transmitter (CSIT) is avail-
able. Hence, a typical choice of the optimization metric is the Ex-
pected Weighted Sum Rate (EWSR). However, the presence of the
expectation operator makes the optimization a daunting task. On the
other hand, for the particular, but significant, special case of massive
MIMO (MaMIMO), the EWSR converges to Expected Signal co-
variance Expected Interference covariance based WSR (ESEI-WSR)
and this metric is more amenable to optimization. Recently, [1] con-
sidered a multi-user Multiple-Input Single-Output (MISO) scenario
and proposed approximating the EWSR by ESEI-WSR. They then
derived a constant bound for this approximation. This paper per-
forms a refined analysis of the gap between EWSR and ESEI-WSR
criteria for finite antenna dimensions.

Index Terms— Beamforming, partial CSIT, EWSR, ESEI-
WSR, MaMIMO

1. INTRODUCTION

Interference is the main limiting factor in wireless transmission.
Base stations (BSs) with multiple antennas are able to serve multiple
Mobile Terminals (MTs) simultaneously, which is called Spatial
Division Multiple Access (SDMA) or Multi-User (MU) MIMO.
We are particularly concerned here with maximum Weighted Sum
Rate (WSR) designs accounting for finite SNR. Typical approaches
for maximizing WSR are based on a link to Weighted Sum MSE
(WSMSE) [2] or an approach based on Difference of Convex func-
tion programming [3] (which is actually better interpreted as an
instance of majorization). However, these approaches rely on per-
fect channel CSIT, which is not practical. Hence, an alternative
approach is to maximize the EWSR for the case of partial CSIT.

Partial CSIT formulations can typically be categorized as either
bounded error / worst case (relevant for quantization error in digital
feedback) or Gaussian error (relevant for analog feedback, predic-
tion error, second-order statistics information etc.). The Gaussian
CSIT formulation with mean and covariance information was first
introduced for SDMA (a Direction of Arrival (DoA) based historical
precedent of MU MIMO), in which the channel outer product was
typically replaced by the transmit side channel correlation matrix,
and worked out in more detail for single user (SU) MIMO, e.g. [4].
The use of covariance CSIT was made in the context of Massive
MIMO [5], where a not so rich propagation environment leads to
subspaces (slow CSIT) for the channel vectors so that the fast CSIT
can be reduced to the smaller dimension of the subspace. Such CSIT

(feedback) reduction is especially crucial for Massive MIMO. Due to
the difficulty in directly optimizing the EWSR metric, optimization
of the expected WSMSE (EWSMSE), which is a lower bound for
the EWSR, was proposed in [6]. In fact, exact expressions exist for
a number of MISO [7] and MIMO cases [8]. However, those expres-
sions are very hard to interpret and to optimize with respect to BFs.
This issue has led to the development of large system analysis to try
to get simpler expressions for the expected rate [9], [10]. Recently,
though under a single user MIMO setting, the authors [11] used a
large system approximation for the optimization of the EWSR met-
ric under partial CSIT to counter the impact of Doppler created Inter
Carrier Interference (ICI). On the other hand, for the particular, but
significant, special case of MaMIMO where the number of transmit
antennas is large compared to the number of receive antennas, the
EWSR converges to ESEI-WSR and this metric is more amenable to
optimization. In another recent publication, [1] considered a multi-
user Multiple-Input Single-Output (MISO) scenario and proposed
approximating the EWSR by ESEI-WSR. They then derived a con-
stant bound for this approximation. The approximate metric was
then used for optimization of the EWSR. Inspired by this, we per-
form a refined analysis of the gap between EWSR and ESEI-WSR
criteria for finite antenna dimensions to evaluate the usefulness of
using the ESEI-WSR metric (that is more mathematically tractable)
instead of the EWSR.

The main goal of this paper is to show that the much simpler
expressions obtained in the ESEI approximation (MaMIMO limit)
in fact exhibit only a finite and even small gap to the exact expected
rate. Towards this end, we first show in section 3.1 for a general non-
zero mean correlated MIMO scenario that the gap is monotonically
increasing as a function of SNR and hence is maximum at infinite
SNR. Then, we go about deriving this gap at infinite SNR for specific
scenarios like uncorrelated MISO (section 3.3), correlated MISO
(section 3.4) and uncorrelated MIMO(section 3.5). The swift reduc-
tion in the gap with increasing number of antennas is clearly seen for
the MISO scenarios. The second order Taylor Series Expansion of
EWSR for a general MIMO setting is also derived in section 3.2 and
observed to concur with the infinite SNR limits for the gap derived
independently. Henceforth, the term gap would refer to the gap be-
tween ESEI-WSR and the EWSR. In the following text, the notation
|A| refers to the determinant of the matrix A. CN (µ,C) refers to
a complex Gaussian distribution with mean µ and covariance C. In
this paper, Tx may denote transmit/transmitter/transmission and Rx
may denote receive/receiver/reception.

2. MIMO IBC SIGNAL MODEL

Consider an IBC withC cells with a total ofK users with dk streams
per user. We shall consider a system-wide numbering of the users.
User k has Nk antennas is served by BS bk. The Nk × dk received
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signal at user k in cell bk is,

yk=Hk,bk Gk xk︸ ︷︷ ︸
signal

+
∑
i6=k
bi=bk

Hk,bk Gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j Gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) signal, Hk,bk is the
Nk × Mbk channel from BS bk to user k. BS bk serves Kbk =∑
i:bi=bk

1 users. We consider a noise whitened signal representa-
tion so that we get for the noise vk ∼ CN (0, INk ). The Mbk × dk
spatial Tx filter or beamformer (BF) is Gk.

The scenario of interest is that of partial CSIT available globally
with all the BSs. The Gaussian CSIT model for the partial CSIT is

Hk,bk = Hk,bk + H̃k,bk C
1/2
t (2)

where Hk,bk = EHk,bk , and C
1/2
t is the Hermitian square-roots of

the Tx side covariance matrices. The elements of H̃k,bk are i.i.d. ∼
CN (0, 1).

EHk,bk
|Hk,bk

(Hk,bk −Hk,bk )(Hk,bk −Hk,bk )H = tr{Ct}INk
EHk,bk

|Hk,bk
(Hk,bk −Hk,bk )H(Hk,bk −Hk,bk ) = NkCt

(3)
Note that the expectation is done over Hk,bk , for a known Hk,bk .
This is true for all the expectation operations done in this paper.
However, as the parameter over which the expectation is done is
clear from the context, henceforth, we just mention the expectation
operator E to reduce notational overhead. It is also of interest to
consider the total Tx side correlation matrix,

EHk,bkH
H
k,bk = Hk,bkH

H
k,bk + tr{Ct}INk . (4)

2.1. Expected WSR (EWSR)

Once the CSIT is imperfect, various optimization criteria could be
considered, such as outage capacity. Here we shall consider the
EWSR for a known channel mean H.

EWSR(G) = E
∑
k

uk ln |I+GH
k HH

k,bkR
−1
k Hk,bkGk|

= E
K∑
k=1

uk (ln |Rk| − ln |Rk|) .
(5)

Here, G represents the collection of BFs Gk, uk are rate weights.

Rk = Hk,bkQkH
H
k,bk

+ Rk , Qi = GiG
H
i ,

Rk =
∑
i 6=k

Hk,biQiH
H
k,bi + INk .

(6)

The EWSR cost function needs to be augmented with the power con-
straints

∑
k:bk=j tr{Qk} ≤ Pj .

2.2. MaMIMO limit and ESEI-WSR

If the number of Tx antennas M becomes very large, we get a con-
vergence for any quadratic term of the form

HQHH M→∞−→ EHQHH = HQH
H

+ tr{QCt} I (7)

and hence we get the following MaMIMO limit matrices

R̆k = R̆k + Hk,bkQkH
H
k,bk + tr{QkCt,k,bk} INk

R̆k = INk +

K∑
i6=k

(
Hk,biQiH

H
k,bi + tr{QiCt,k,bi} INk

) (8)

Now, typical approaches to solve the WSR (eg. the DC approach
in [3] ) can be run to obtain the max EWSR BF. We shall refer to this
approach as the ESEI-WSR approach as (channel dependent) signal
and interference covariance matrices are replaced by their expected
values. In the following sections, we analyze the gap between the
EWSR and the ESEI-WSR to suggest an approximation of the first
by the latter in the design of the BF. We would like to remark here
that the ESEI-WSR may also be interpreted as the WSR that would
be obtained if we assume that the received signal and interference
are also Gaussian.

3. EWSR TO ESEI-WSR GAP ANALYSIS

We are interested in bounding the difference between ESEI-WSR
and the EWSR. At the level of each user k, we stack the channel
estimates relevant for each user k.

Hk = [Hk,b1 · · ·Hk,bk−1 Hk,bk Hk,bk+1 · · ·Hk,bK ]

= Hk + H̃kC
1
2
t,k

(9)

where the elements of H̃k are i.i.d ∼ CN (0, 1) and Hk refers to
the mean part of Hk. Ct,k is a block diagonal matrix whose ith

diagonal block is Ct,k,bi . Let Q be a block diagonal matrix with
each diagonal block being Qk. Qk̄ is similar to Q but with the kth

block diagonal set to all zeros. Then,

Rk = I + HkQHH
k , Rk̄ = I + HkQk̄H

H
k (10)

EWSR(G) =

K∑
k=1

uk EHk (ln |Rk| − ln |Rk|)

=E
K∑
k=1

uk
(

ln |I + HkQHH
k | − ln |I + HkQk̄H

H
k |
)

(11)
ESEI-WSR(G)

=

K∑
k=1

uk
(

ln |I + EHkQHH
k | − ln |I + EHkQk̄H

H
k |
) (12)

Thus, the EWSR and ESEI-WSR have been rewritten in a convenient
format so that one can focus on the gap between the two by compar-
ing terms of the form E ln |I + HkQHH

k | and ln |I + EHkQHH
k |.

3.1. Monotonicity of gap with SNR

For an SNR ρ, define

Γ(ρ) = ln |I + ρEH′kH
′
k
H | − E ln |I + ρH′kH

′
k
H | (13)

where H′k ∼ CN (H
′
k,C), H

′
k = 1√

ρ
HkQ

1
2 , and C = 1

ρ
C

1
2
t QC

1
2
t .

Then, I + HkQHH
k = I + ρEH′kH′k

H .

Theorem 1. Γ(ρ) is monotonically increasing in ρ



Proof. By Jensen’s inequality, Γk ≥ 0. To show the monotonicity,
we show that the derivative with respect to ρ is always non-negative.
We omit the subscripts and superscripts on H for convenience.

∂

∂ρ

(
ln |I + ρEHHH | − E ln |I + ρHHH |

)
=

tr
(
{I + ρEHHH}−1EHHH − E

(
{I + ρHHH}−1HHH

))
(14)

Noting that, {I+ρEHHH}−1EHHH can be written as 1
ρ
I− 1

ρ
{I+

ρEHHH}−1,

∂
∂ρ

(
ln |I + ρEHHH | − E ln |I + ρHHH |

)
=

1
ρ

tr E
(
{I + ρHHH}−1

)
− tr 1

ρ
{I + ρEHHH}−1 ≥ 0

(15)

where we have applied Jensen’s inequality as {I + ρHHH}−1 is a
convex function.

As a result, the largest value of Γ will be observed at infinite
SNR for a general non-zero mean MIMO with channel H with arbi-
trary transmit covariance matrix. Now, following the same steps as
in [1], we can obtain,

ESEI-WSR−
K∑
k=1

ukΓk(∞) ≤ ESEI-WSR−
K∑
k=1

ukΓk(ρ)

≤ EWSR ≤

ESEI-WSR +

K∑
k=1

ukΓk̄(ρ) ≤ ESEI-WSR +

K∑
k=1

ukΓk̄(∞).

(16)
In the above, Γk and Γk̄ are terms corresponding to the first and the
second terms of equation (11). Remains now to obtain the Γ(∞)
for different scenarios. However, we first look at the Taylor series
expansion of EWSR to gain further insight.

3.2. Second-Order Taylor Series Expansion of EWSR

Consider the Taylor series expansion for matrices X, Y of dimen-
sion Nk ×M .

ln |X + Y| ≈ ln |X|+ trX−1Y − 1

2
trX−1YX−1Y (17)

Consider X+Y = I+ ρHHH , H = H+ H̃C
1
2 , H̃ ∼ CN (0, I).

For expansion around I + ρEHHH , choose X = I + ρEHHH ,
Y = ρ

(
EHHH −HHH

)
. Hence, we get,

E ln |I + ρHHH | ≈ ln |I + ρEHHH |−
ρ2

2
E tr{X−1(HHH − EHHH)X−1(HHH − EHHH)}

(18)

Using 4th order Gaussian moments [12], we get

E ln |I + ρHHH | ≈ ln |I + ρEHHH | − ρ2

2
tr
{

tr{X−1}2C2

+ 2tr{X−1}HH
X−1HC− (H

H
X−1H)2

}
.

(19)
Let us denote this second order approximation by Γ2(ρ). i.e,

Γ2(ρ) =
ρ2

2
tr
{

tr{X−1}2C2

+ 2tr{X−1}HH
X−1HC− (H

H
X−1H)2

}
.

(20)

Consider the mean zero special case, H = 0. Then, EHHH =
tr{C}I and X = INk + ρtr{C}INk . Therefore,

E ln |I + ρHHH | ≈ ln(1 + ρtr(C))− ρ2N2
k

2

tr{C2}
(1 + ρtr{C})2

.

(21)
At high SNR, as ρ→∞,

E ln |I + ρHHH | ≈ ln(1 + ρtr(C))− N2
k

2

tr{C2}
(tr{C})2

. (22)

Thus,

Γ2(∞) =
N2
k

2

tr{C2}
(tr{C})2

(23)

Continuing from Theorem 1, we now determine the value of
Γ(∞) for different scenarios.

3.3. MISO independent and identically distributed (iid) channel

In the MISO iid channel, the relevant metric is of the form ln(1 +
||h||2), where h is the 1×M MISO channel vector.

Theorem 2.

0 ≤ ln(1+Mρ)−E ln(1+ρ||h||2) ≤ γ−

(
M∑
k=1

1

k
− ln(M)

)
+

1

M
,

(24)
where ρ is the SNR, γ is Euler constant.

Proof. The proof is given in Appendix A.

Note that for M = 1, the bound reduces to that in [1], namely
γ. Thus, this bound is a much more refined and tighter bound than
what is provided in [1].

We further explore the bound using the properties of the har-
monic series. DefineHM =

∑M
k=1

1
k

. It is known that,

HM = ln(M) + γ +
1

2M
− 1

12M2
+

1

120M4
· · · (25)

Using this in (24), we get

γ − (HM − ln(M)) +
1

M
=

1

2M
+

1

12M2
− 1

120M4
· · · (26)

Thus, we see that the second order term for the bound is 1
2M

, which
is also in agreement with equation (22). In the iid case, C = IM ,
hence,

1

2

tr{C2}
(tr{C})2

=

∑M
i=1 1

2(
∑M
i=1 1)2

=
1

2M
(27)

3.4. MISO correlated channel

Theorem 3.

0 ≤ ln(1 + ρ

p∑
i=1

λi)−E ln(1 + ρ||h||2)

≤ γ −

(
p∑
i=1

lnλi
πl 6=i(1− λl/λi)

− ln(

p∑
i=1

λi)

)
,

(28)

where ρ is the SNR, γ is Euler constant, λi · · ·λp are the p non-zero
eigen values of the correlation matrix EhhH .

Proof. The proof is given in Appendix A.



From the second order Taylor series expansion (equation (22)),
the second order term of this bound is

1

2

tr{C2}
(tr{C})2

=

∑p
i=1 λ

2
i

2(
∑p
i=1 λi)

2
(29)

3.5. MIMO zero mean i.i.d channel

In a multi-user scenario, the regime of interest is M ≥ Nk. To
tackle this scenario, we first introduce the LDU (Lower Diagonal
Upper triangular factorization) of the channel Gram matrix,

HHH = LDLH = (LD
1
2 )(LD

1
2 )H (30)

where L has unit diagonal and D is a diagonal matrix with diago-
nal entries (Di) greater than zero. The second factorization corre-
sponds to a Cholesky decomposition. The Cholesky factorization of
a Wishart matrix (such as HHH ) leads to,{

Di ∼ 1
2
χ2

2(M−i+1), i ∈ 1 · · ·Nk
Li,jD

1
2
i ∼ CN (0, 1), i > j

(31)

which is also known as Bartlett’s decomposition [13]. Note that
|HHH | = |LDLH | = |D|. Hence, ln |HHH | =

∑Nk
i=1 ln |Di|

and the MIMO case reduces to a sum of MISO scenarios, each hav-
ing a χ2 distribution with a reducing number of degrees of freedom.
Thus, reusing the results in section 3.3, we get

Γ(∞) =

Nk∑
i=1

(
γ −

(
M−i+1∑
k=1

1

k
− ln(M − i+ 1)

)
+

1

M − i+ 1

)

+Nk ln(M)−
Nk∑
i=1

ln(M − i+ 1)

=

Nk∑
i=1

(
γ −

(
M−i∑
k=1

1

k
− ln(M)

))
(32)

where the second term addresses the fact that the MISO gaps in
section 3.3 were computed with respect to the ESEI-WSR limit of
ln(1 + ρ(M − i + 1)), whereas in the MIMO zero mean i.i.d sce-
nario, the ESEI-WSR limit is Nk ln(1 + ρM). For illustration, let
us also consider M � Nk. Then using the approximation of the

Harmonic series, it can be easily shown that Γ(∞) ≈ N2
k

2M
, which

concurs with the second order Taylor series term in (22).

4. NUMERICAL RESULTS

Figure 1 verifies the infinite-SNR bounds for MISO i.i.d scenario by
comparing them against the true values of the gap for different SNRs
and different values of M . The true values of the gap are obtained
by explicitly performing the integration in Matlab. As expected, the
gap is zero at very low SNR. As the SNR increases, the gap mono-
tonically increases to the infinite SNR limit, as predicted in section
3.1. In addition, the gap reduces rapidly with increasing M . As the
MIMO i.i.d case is a sum of MISO i.i.d scenarios, these curves apply
to the MIMO i.i.d scenario as well.

Further, to verify the goodness of the second order Taylor series
approximation, Figure 2 compares the true gap to the gap approxi-
mated from the Taylor series expansion for a zero mean correlated
MIMO scenario. This scenario is chosen as we expect gap to be
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Fig. 1. Gap between ESEI-WSR and EWSR for the MISO i.i.d sce-
nario for different values of transmit antennas.

maximum here. The number of receive antennas for each user was
chosen as Nk = 4. ρ was chosen as 1000. As expected, the Taylor
series approximation becomes more accurate with increasing num-
ber of Tx antennas. Indeed, even in this MIMO correlated scenario,
the gap also reduces quickly as the number of Tx antennas increase.
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Fig. 2. Comparison of the gap obtained from the second order Tay-
lor series approximation and the true value of the gap for a MIMO
correlated scenario. The number of antennas at each receiver, Nk, is
taken as 4.

5. CONCLUSION

In this paper, we have motivated the use of the ESEI-WSR metric (or
the MaMIMO limit of the EWSR) for utility optimization involving
partial CSIT. Towards this end, we presented a refined bound for the
gap between EWSR and the ESEI-WSR. We first showed that the
gap is maximum at infinite SNR. The results clearly show that the
gap reduces with the number of transmit antennas - thereby concur-
ring with the well known result for the MaMIMO limit.The general



case of correlated MIMO channel with non-zero mean is a future
work to be addressed. However, we conjecture that in the case of a
non-zero mean MIMO, the gap would further reduce based on the
rice factor (the ratio of the power in the mean to that of the ran-
dom part). However, a few comments are in order. Whenever Γ(∞)
is closely approximated by Γ2(∞) then Γ(ρ) should be closely ap-
proximated by Γ2(ρ) also. We can also observe that whenever the
gap Γ(ρ) gets small, the second-order term Γ2(ρ) becomes good, in
the sense that Γ(ρ) = Γ2(ρ) +O(Γ2

2(ρ)).
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A. COLLECTION OF PROOFS

Proof. of Theorem 2 To ease the notation, we take x = ||h||2, where
x is Chi-squared distributed with meanM . For aχ2 distribution with
mean M and 2Nt degrees of freedom,

fX(x) =
xM−1e−x

(M − 1)!
. (33)

As γ = −
∫∞

0
e−x ln(x)dx, at high SNR (ρ→∞),

Ex ln(1 + ρx) =

∫ ∞
0

fX(x) ln(ρx)dx

=

∫ ∞
0

xM−1e−x

(M − 1)!
ln(x)dx+ ln(ρ).

(34)

We note the following,

∫
e−x ln(x)dx = −e−x ln(x) + Ei(−x),Ei(x) = −

∫ ∞
−x

e−t

t
dt

(35)

−
∫ ∞

0

x(M−2)

(M − 2)!
Ei(−x)dx =

∫ ∞
0

x(M−2)

(M − 2)!

∫ ∞
x

e−t

t
dtdx

=

∫ ∞
0

(∫ t

0

x(M−2)

(M − 2)!
dx

)
e−t

t
dt

=

∫ ∞
0

t(M−1)

(M − 1)!

e−t

t
dt =

1

M − 1
(36)

Integrating by parts (M ≥ 2),

∫ ∞
0

xM−1e−x

(M − 1)!
ln(x)dx =

xM−1

(M − 1)!

(
−e−x ln(x) + Ei(−x)

)∞
0
−∫ ∞

0

xM−2

(M − 2)!

(
−e−x ln(x) + Ei(−x)

)
(37)

The first part in the above equation is zero, so we only need to focus
on the second portion of the integral.∫ ∞

0

xM−1e−x

(M − 1)!
ln(x)dx

= −
∫ ∞

0

xM−2

(M − 2)!

(
−e−x ln(x) + Ei(−x)

)
=

∫ ∞
0

xM−2e−x

(M − 2)!
ln(x)dx−

∫ ∞
0

xM−2

(M − 2)!
Ei(−x)

=

∫ ∞
0

xM−2e−x

(M − 2)!
ln(x)dx+

1

M − 1

(38)

The above is a recursive equation, from where, we quickly deduce
that,∫ ∞

0

xM−1e−x

(M − 1)!
ln(x)dx =

∫ ∞
0

e−x ln(x)dx+

M−1∑
k

1

k

= −γ +

M−1∑
k

1

k

(39)

Thus, we can now write (34) as,

Ex ln(1 + ρx) =

∫ ∞
0

xM−1e−x

(M − 1)!
ln(x)dx+ ln(ρ)

= −γ +

M−1∑
k=1

1

k
+ ln(ρ)

= −γ +

(
M−1∑
k=1

1

k
− ln(M)

)
+ ln(Mρ)

(40)

Proof. of Theorem 3.
For a correlated MISO scenario, we can write equivalently,

ln |1 + ρ||h||2| = ln |1 + ρ

p∑
i=1

λi|hi|2|, (41)

where λi, i ∈ 1 · · · p are the non-zero eigen values of the correlation
matrix EhhH , scaled in such a manner that

∑p
i=1 λi = M . hi ∼

CN (0, 1). We make the reasonable assumption that all the non-zero
eigen values are unequal. In this case, the probability distribution

is given [14] as
∑p
i=1

e
− x
λi

λiπl 6=i(1−λl/λi)
, where x =

∑p
i=1 λi|hi|

2.
Thus, at high SNR (ρ→∞),

Ex ln(1 + ρx) =

∫ ∞
0

p∑
i=1

e
− x
λi

λiπl 6=i(1− λl/λi)
ln(x)dx+ ln(ρ)

=

p∑
i=1

∫∞
0

1
λi
e
− x
λi ln(x)dx

πl 6=i(1− λl/λi)
+ ln(ρ)

=

p∑
i=1

−γ + lnλi
πl 6=i(1− λl/λi)

+ ln(ρ)

= −γ +

(
p∑
i=1

lnλi
πl 6=i(1− λl/λi)

− ln(

p∑
i=1

λi)

)
+ ln(ρ

p∑
i=1

λi).

(42)
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