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ABSTRACT

Recent works have proposed neural models for dialog act
classification in spoken dialogs. However, they have not ex-
plored the role and the usefulness of acoustic information. We
propose a neural model that processes both lexical and acous-
tic features for classification. Our results on two benchmark
datasets reveal that acoustic features are helpful in improving
the overall accuracy. Finally, a deeper analysis shows that
acoustic features are valuable in three cases: when a dialog
act has sufficient data, when lexical information is limited and
when strong lexical cues are not present.

Index Terms— dialog act, lexico-acoustic features

1. INTRODUCTION

Every utterance in a conversation has a level of illocutionary
force [1] whose meaning induces an effect over the course
of the dialog. That meaning can be categorized into dialog
acts (DAs) taking into account the relationship between the
words being used and the force of the utterance [2]. A DA is
the expression of the speaker’s attitude or intention at every
utterance in a conversation. Kent Bach [2] illustrates this
by pointing out that a statement expresses a belief, a request
expresses a desire, and an apology expresses a regret. In this
manner, dialogs can be studied and modeled by analyzing their
sequence of DAs.

Automatic DA tagging is an important preprocessing step
for semantic extraction in natural language understanding and
dialog systems. This task has been approached using two
main information sources: lexical cues from dialog transcripts
and acoustic cues from speech signals. For the former, tra-
ditional statistical algorithms have been employed, such as
hidden Markov models (HMMs) [3], conditional random fields
(CRFs), [4] and support vector machines (SVMs) [5]. Recently,
deep learning (DL) techniques, such as convolutional neural
networks (CNNs) [6, 7], recurrent neural networks (RNNs)
[7, 8] and long short-term memory (LSTM) models [9], have
attained the state-of-the-art results in DA classification.

DAs can be ambiguous if only lexical information is con-
sidered. For example, a Declarative Question like ”this is your
car(?)” is hard to distinguish from a Statement if the question

mark is not present, and can easily be misclassified due to
word order. In this case, acoustic information can help disam-
biguate. Moreover, in real applications that involve automatic
speech recognition (ASR), a DA classifier can help deal with
noisy transcriptions. Hence, some researchers [3, 10] have
explored acoustic and prosodic cues from the speech signal as
a potential knowledge source for DA classification.

Other works [11, 12] have showed improvements explor-
ing combinations of lexico-acoustic features. Inspired by these
works, we present a neural hybrid model that takes both lex-
ical and acoustic features as input in order to classify dialog
utterances into DAs. Our model is a combination of two neural-
based models: one, which processes lexical features of the ut-
terances and their context (based on [13]), and a second, which
processes acoustic features. Our experiments show that acous-
tic features are helpful for improving overall accuracy and
attaining state-of-the-art results on two benchmark datasets:
the ICSI Meeting Recorder Dialog Act Corpus (MRDA) and
the NXT-format Switchboard Corpus (SwDA). We also in-
clude an analysis of the acoustic features contribution for DA
classification in three circumstances: when a DA has sufficient
data, when strong lexical cues are missing and for single-word
utterances.

2. MODEL

The architecture of the lexico-acoustic model (LAM) proposed
in this paper is depicted in Figure 1. It contains two main
parts: on the left side is the lexical model (LM) and on the
right side the acoustic model (AM). Models are detailed in
sections 2.1-2.3.

2.1. Lexical model

The LM, based on [13], takes the concatenation of grid-like
representations of the current utterance and its n previous
utterances in the dialog as input to be processed by a CNN,
generating a vector representation for each of those utterances.

The CNN performs a discrete convolution using a set of
different filters on an input matrix, where each column of the
matrix is the word embedding of the corresponding word. We
use 2D filters f (with width |f |) spanning over all embedding
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Fig. 1. Architecture of the lexico-acoustic model. ⊕ represents
a concatenation.

dimensions d as described by the following equation:

(w ∗ f)(x, y) =
d∑

i=1

|f |/2∑
j=−|f |/2

w(i, j) · f(x− i, y − j) (1)

After convolution, an utterance-wise max pooling oper-
ation is applied. Then, the feature maps are concatenated,
resulting in one vector per utterance. These are represented in
Figure 1 as pt−2, pt−1 and pt.

The vector representations of the utterances are then
processed by a context learning method, the RNN-Output-
Attention (ROA) proposed in [13], in order to model the
relation between each utterance and its context. ROA consists
of an RNN with LSTM units followed by a weighted sum of
the RNN’s hidden states using an attention mechanism [14].

For each of the hidden state vector h(t − i) at time step
t− i in a dialog, where t is the current time step. The attention
weights αi are computed as follows

αi =
exp(f(h(t− i)))∑
j exp(f(h(t− j))

(2)

where f is the scoring function. In our work, f is the linear
function of the input h(t− i)

f(h(t− i)) =WTh(t− i) (3)

whereW is a trainable parameter. The output lt is the weighted
sum of the hidden states sequence.

lt =
∑
i

αih(t− i) (4)

Finally, the context representation lt is fed into a softmax
layer that outputs a probability distribution over the DA set,
given the current dialog utterance.

2.2. Acoustic model

We propose a CNN-based model to process acoustic features,
because the speech signal of the utterances encodes important
information for DA classification that is not contained in the
transcripts. The acoustic features from the speech signal are
not taken at word or utterance level, but at frame level, i.e. the
speech signal is divided into frames of 25 ms with a shift of 10
ms, and 13 Mel-frequency-cepstral coefficients (MFCC) per
frame are extracted using the openSMILE toolkit [15]. MFCC
features are stacked sequentially in order to obtain a grid-like
input representation of the acoustic signal.

The input is processed by a one-layer CNN using filters
that span over the 13 MFCC features and 5 frames a time,
with a max pooling layer in order to obtain a fixed-length
vector representation. This is fed into a softmax layer for DA
classification, as explained in Section 2.1.

2.3. Lexico-acoustic model

The core of this work is the LAM (depicted in Figure 1), a bi-
CNN that employs lexical and acoustic cues simultaneously as
input. The LAM combines a LM and a AM by concatenating
the vector representations (lt and at) obtained from the context
processing method in the LM and the pooling layer in the AM.
Both vectors represent the current utterance, and can therefore
be joined at this level and passed to the softmax function to
output a final probability distribution over the DA set.

3. EXPERIMENTS

3.1. Data

We test our model on two DA datasets: 1) MRDA: ICSI Meet-
ing Recorder Dialog Act Corpus [16], a dialog corpus of multi-
party meetings. The 5-tag-set used in this work was introduced
by [17]. 2) SwDA: NXT-format Switchboard Corpus [18], a
dialog corpus of 2-speaker conversations.

NXT-format Switchboard Corpus was preferred over the
original Switchboard Dialog Act Corpus [19, 20] because the
former provides utterance transcripts and DA annotations as
well as the time stamps at word level that were useful to extract
acoustic features. Nonetheless, this corpus only provides DA
annotation for roughly 50% of the original dataset.

Train, validation and test splits on MRDA were taken as
defined in [7]. However, on SwDA the splits were built by
taking the annotated conversations from NXT-format Switch-
board Corpus that appear in the split lists published in [7]. The
new train, validation and test splits are roughly the half of
the conversations on each original split. Summary statistics
are shown in Table 1. In both datasets, the classes are highly
unbalanced; the majority class is 59.1% on MRDA and 34.7 %
on SwDA.



Dataset C |V| Train Validation Test
MRDA 5 12k 78k 16k 15k
SwDA 42 16k 98k 8.5k 2.5k

Table 1. Data statistics: C is the number of classes, |V| is the
vocabulary size and Train/Validation/Test are #utterances.

3.2. Hyperparameters and Training

The hyperparameters of the three models for both datasets
are summarized in Table 2. The LM’s hyperparameters were
taken from [13], while the AM’s hyperparameters were ob-
tained by varying one hyperparameter at a time while keeping
the others fixed. Training was done for 25 epochs with aver-
aged stochastic gradient descent [21] over mini-batches. The
learning rate was initialized at 0.11 and reduced 10% every
2000 parameter updates. Word2vec pretrained embeddings
[22] were employed and tuned during training. The context
length n was taken from the original the LM, i.e. n = 3 for
MRDA and n = 2 for SwDA.

Hyperparameter LM AM
Filter width 3, 4, 5 5
Feature maps per filter 100 100
Dropout rate 0.5 0.5
Activation function ReLU ReLU
Pooling size utterance-wise (18,1)
Word embeddings word2vec[22] (dim. 300) —
MFCC features — 13
Mini-batch size 50 (MRDA) – 150 (SwDA)

Table 2. Hyperparameters.

3.3. Results

Table 3 shows the results obtained from the three models on
both datasets. As expected, the LM is superior to the AM, i.e.
the lexical features yield more valuable information than the
acoustic features for our task. On both datasets, the LM’s accu-
racy is significantly higher than the AM’s accuracy. However,
for both datasets, the combined model yields improvements
over both constituent models. It indicates that both cue sources
complement each other.

Model MRDA SwDA
Lexical 84.1 73.6
Acoustic 67.8 50.9
Lexico-acoustic 84.7 75.1

Table 3. Accuracy (%) of the three models on both datasets.

4. ANALYSIS

This section’s goal is to analyze the impact of joining both
models, and to report and discuss which DAs benefit and which

are impacted negatively, by applying a LAM versus a LM.
Moreover, we also investigate the effect of the acoustic features
when the question mark (?) is removed from transcripts and
when utterances are very short.

On MRDA, as reported in the previous section, the LAM
yielded an improvement of 0.6% over the LM. However, the
improvement is not uniform over the five classes. While the
prediction of the DAs Statement, Disruption and Backchannel
obtains a benefit from the acoustic features, Filter is impacted
negatively and Question stays the same. Nonetheless, in gen-
eral terms, the LAM benefits the overall DA classification,
specially for those DAs with a higher presence in the training
set, and the degradation caused by the model does not hurt its
overall performance.

On SwDA, the LAM also outperformed the LM by 1.5%.
Five DAs benefited by adding acoustic features: Statement,
Backchannel, Opinion, Abandon and Agree, Wh question and
Acknowledge were negatively affected in a minimal extent, and
the remaining 35 DAs were not impacted. These results are
again highly correlated to the DA distribution in the corpus
– the 5 most frequent DAs obtained an improvement that is
reflected in the overall accuracy. Therefore, we argue that
the LAM helps when a large number of examples per DA is
available. One possible reason is that we have enough training
data for these particular DAs to properly train the AM part of
the LAM.

Effect of removing the question mark Contrary to our ini-
tial hypothesis that acoustic features would improve the ac-
curacy of classifying Question, no improvement was noted.
Therefore, we analyzed how the LM and the LAM performed
on this particular DA more deeply. The question mark ? in
the manual transcripts plays a fundamental role for the DA
Question in the LM; 97.7% of the utterances with question
marks which are labeled as Question are correctly predicted
(see Table 4) by the LM. For that reason, the acoustic features
are not able to provide any useful information.

Consequently, we retrained and tested the LM and the
LAM using transcripts from which the question mark was
removed. This change also makes the transcripts more similar
to transcripts from an ASR, where punctuation is not available
or is not highly accurate. As expected, the overall accuracy
dropped, from 84.1% to 80.8% in the LM and from 84.7%
to 81.9% in the LAM. Although both models were affected
by this modification, the LAM performed 1.1% better than
the LM, versus the improvement of 0.6% with the original
transcripts. Acoustic features slightly dampen the negative
effect on the accuracy of removing the question mark.

Table 4 shows the accuracy of the LM and the LAM exclu-
sively on utterances whose DA is Question and which have a
question mark in the manual transcript. The second column
corresponds to the models which were trained and tested on the
original transcripts and the third column to the models which
were trained on transcripts with question marks removed. As



mentioned above, the LM has a high accuracy at correctly
predicting Question if the utterance has the question mark.
Moreover, when the acoustic features are added, the accuracy
decreases by 1.6%. Nonetheless, if question marks are not
present in the data, the LM’s accuracy drops to 46.6%. This
shows that this character is the most important cue at lexical
level. The LAM’s accuracy drops to 50.2%, but this time it
is superior to the LM by 3.6%. This indicates that acoustic
information is an important source of cues for tasks that use
DA classification over data that lacks these important lexical
cues, such as spoken language understanding.

Model With ’?’ ’?’ removed
Lexical 97.7 46.6
Lexico-acoustic 96.1 50.2

Table 4. Accuracy (%) of Question utterances on MRDA with
question mark and when the question mark is removed.

Single-word utterances There exist utterances like Right or
Yeah that are very common across several DAs. One of their
characteristics is that they are very short and consequently they
do not yield much information for classification. [13, 7, 23]
have successfully explored the use of context as a way to
differentiate these type of utterances. In line with these works,
both the LM and the LAM (in its lexical component) encode
the context.

We have shown in Section 3.3 that the LAM outperforms
the LM on both datasets, however, we explored particularly the
effect of using acoustic features on the utterances Right and
Yeah that are frequently tagged as Statement and Backchannel
on MRDA. For our analysis purposes, we extracted the pre-
dictions of the utterances that exclusively contained one word
that is either Right or Yeah, from which we can artificially
define four subclasses: Statement-Right, Backchannel-Right,
Statement-Yeah and Backchannel-Yeah.

Table 5 shows the precision, recall and F1 score of the LM
and the LAM for the utterances Right. On the one hand, for
the DA Statement the LAM achieves a higher F1 score than
the LM, while on the other hand, the F1 score for Backchannel
decreases slightly. This means that using acoustic features
improves the classification of utterances Right as Statement
without affecting those utterances tagged as Backchannel. A
similar phenomenon is observed with utterances Yeah, how-
ever, in this case, the LAM improves the F1 score for both DAs
Statement and Backchannel (see Table 6).

5. COMPARISON WITH OTHER WORKS

We present a comparison between different works and our
model in Table 5. On MRDA, as we used the setup proposed
by [7], our results can only be compared accurately to [13] and
[7], and the LAM outperforms both works. On SwDA, as we
used the data available in the NXT format, and, to the best of

DA-Right Model P R F1

Statement Lexical 0.62 0.35 0.45
Lexico-acoustic 0.60 0.45 0.52

Backchannel Lexical 0.56 0.85 0.67
Lexico-acoustic 0.56 0.77 0.65

Table 5. Precision, recall and F1 score for the utterances Right

DA-Yeah Model P R F1

Statement Lexical 0.65 0.36 0.46
Lexico-acoustic 0.67 0.50 0.57

Backchannel Lexical 0.60 0.89 0.72
Lexico-acoustic 0.64 0.87 0.74

Table 6. Precision, recall and F1 score for the utterances Yeah

our knowledge, no other model has been trained and tested on
this subset of SwDA, our results cannot be strictly compared
with other works.

Model MRDA SwDA
LAM (Our model) 84.7 75.1
NCRL 84.3 73.8
CNN-FF 84.6 73.1
HBM 81.3 —
CNN+DAP — 79.9
HCNN — 73.9
HMM — 71.0
Majority class 59.1 34.7

Table 7. Comparison of accuracy (%). NCRL: Neural context
representation learning proposed in [13], CNN-FF: proposed
in [7], HBM: hidden backoff model [24]. CNN+DAP:proposed
by [23]. HCNN: hierarchical CNN [6]. HMM [3]. Majority
class is the most frequent class.

6. CONCLUSION

We proposed an approach to incorporate lexical and acoustic
features in a neural model for DA classification. Our experi-
ments on two benchmark datasets reveal that adding acoustic
information to the model improves the overall accuracy at-
taining state-of-the-art results. A deeper analysis showed that
acoustic features specially help when the data for a particular
DA is large enough, when lexical information is limited, as in
single-word utterances, and when strong lexical cues are not
present.
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