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ABSTRACT

This paper investigates calibration of sensor arrays in the radio

astronomy context. Current and future radio telescopes require com-

putationally efficient algorithms to overcome the new technical chal-

lenges as large collecting area, wide field of view and huge data vol-

ume. Specifically, we study the calibration of radio interferometry

stations with significant direction dependent distortions. We propose

an iterative robust calibration algorithm based on a relaxed maxi-

mum likelihood estimator for a specific context: i) observations are

affected by the presence of outliers and ii) parameters of interest have

a specific structure depending on frequency. Variation of parameters

across frequency is addressed through a distributed procedure, which

is consistent with the new radio synthesis arrays where the full ob-

serving bandwidth is divided into multiple frequency channels. Nu-

merical simulations reveal that the proposed robust distributed cali-

bration estimator outperforms the conventional non-robust algorithm

and/or the mono-frequency case.

Index Terms— Robust calibration, distributed optimization,

consensus, direction dependent distortions regime.

1. INTRODUCTION

With a resolution and sensitivity greater than any previous systems

in the low observing frequencies, the low frequency array (LOFAR)

and the square kilometre array (SKA) impose major challenges in

terms of telescope design and data processing [1–3]. Among these

challenges, the calibration step is crucial for the advanced phased

array radio telescopes due to the large number of receivers and their

wide field-of-view. These design features result in direction depen-

dent effects [4], varying over the field-of-view, due, e.g., to iono-

spheric disturbances, and in gain differences from one receiving ele-

ment to another. To avoid any calibration error preventing the ex-

ploitation of the full sensitivity potential and decreasing the high

dynamic range performance of imaging [5], environmental and in-

strumental unknowns need to be corrected for.

In several studies [6, 7], array signal processing tools are used

to perform calibration, especially the maximum likelihood (ML) es-

timator which is usually introduced under a Gaussian noise model

assumption [8]. However, in our application, such noise modeling

is not adapted: the sky model is composed of several bright known

sources (the calibrator sources) but also many unknown unmodeled

sources which give rise to incomplete sky models [9]. Furthermore,
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radio astronomical measurements are contaminated by radio intef-

erence [10]. All these effects, and others, lead to the presence of

outliers in the data set. To take them into account, a robust cali-

bration technique was introduced in [9] where the noise model is

specifically described as a Student’s t with independent identically

distributed entries. To improve calibration, we proposed, in a previ-

ous work [11], to adopt a compound-Gaussian modeling [12] which

includes a broad range of different distributions and revealed to be

more robust [13].

Furthermore, it should be noted that direction independent gains

of each sensor and direction dependent perturbations associated to

each source are estimated through the calibration process, where the

latter parameters are frequency dependent. To exploit the known

structure of variation w.r.t. frequency [14], calibration is reformu-

lated as a constrained consensus problem and addressed with the

alternating direction method of multipliers (ADMM) [15, 16]. To

reduce the computational burden, we process the data thanks to a

distributed architecture with a network of agents [17]. Decentralized

and distributed strategies have already been applied for image re-

construction in radio astronomy [18] and also for calibration [19] in

the Gaussian and non-structured case. In this work, we particularly

focus on robust calibration of radio interferometry compact stations

with direction dependent distortions, named as the 3DC calibration

regime (structured case) [13].

The notation used through this paper is the following: symbols

(·)T , (·)∗, (·)H denote, respectively, the transpose, the complex con-

jugate and the Hermitian transpose. The symbol ⊗ represents the

Kronecker product, vec(·) stacks the columns of a matrix on top of

one another, diag{·} converts a vector into a diagonal matrix and the

trace is given by tr {·}. The B × B identity matrix is referred by

IB , || · ||F is the Frobenius norm, while || · ||2 denotes the l2 norm.

Finally, j is the complex number whose square equals −1 and [·]k
refers to the k-th entry of the considered vector.

2. MODEL SET UP AND BACKGROUND ON ROBUST

CALIBRATION ALGORITHM

2.1. Data model

We consider D signal waves emitted by calibrator sources impinging

on an array of M antennas. The cross correlation between (noisy

free) voltages measured by two antennas p and q, is given by [20]

Vpq(θ) =

D
∑

i=1

Ji,p(θ)CiJ
H
i,q(θ) for p < q, (p, q) ∈ {1, . . . ,M}2,

(1)
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where Ci is a known matrix describing the polarization state of the

i-th calibrator source while Ji,p(θ) stands for all the perturbations

along the full corresponding signal path (from the i-th source to the

p-th antenna) and is referred as a 2 × 2 Jones matrix [21]. The aim

of calibration is to estimate the parameter vector θ. We rewrite (1)

as

ṽpq(θ) = vec
(

Vpq(θ)
)

=
D
∑

i=1

ui,pq(θ)

in which ui,pq(θ) =
(

J∗
i,q(θ)⊗ Ji,p(θ)

)

ci and ci = vec(Ci).
The noisy output observation vector of the full array is x =
[

vT
12,v

T
13, . . . ,v

T
(M−1)M

]T
s.t. vpq = ṽpq(θ) + npq . We note

npq the noise sample at a particular antenna pair which takes into

account background Gaussian noise but also the presence of outliers.

To deal with non-Gaussianity of the noise, we assume a

compound-Gaussian noise model since it includes a broad range

of heavy-tailed distributions [12, 22]. Its expression is given by

npq =
√
τpq µpq,

where τpq is the positive texture variable and µpq ∼ CN (0,Ω) is

the complex speckle part.

2.2. Robust estimation of Jones matrices

The ML method is used to estimate iteratively parameters of inter-

est θ, the covariance matrix Ω and all realizations τpq for p <
q, (p, q) ∈ {1, . . . ,M}2 which are considered unknown and de-

terministic in the algorithm, leading to a relaxed version of the ML

[23]. Results are directly exposed in non-structured calibration al-

gorithm (NSCA) and details can be found in [11, 13]. Let us denote

apq(θ) = vpq − ṽpq(θ), B = M(M−1)
2

is the number of antenna

pairs and we impose tr {Ω} = 1 to remove scaling ambiguities [24].

Estimation of θ in step 2 of NSCA can be performed numerically or

thanks to expectation maximization (EM) [25] and block coordinate

descent (BCD) algorithms [26]. Such vector refers here to the entries

of all DM Jones matrices (non-structured case) [8, 27].

NSCA: Non-structured calibration algorithm

input : D, M , B, {Ci}i=1,...,D , x

output : θ̂

initialize: Ω̂← Ωinit, {τ̂ pq ← τ pqinit}p<q,(p,q)∈{1,...,M}2

1 while stop criterion unreached do

22 θ̂ = argmin
θ

{

∑

pq

1
τ̂pq

aH
pq(θ)Ω̂

−1
apq(θ)

}

33 Ω̂ = 4
B

∑

pq

apq(θ̂)a
H
pq(θ̂)

aH
pq(θ̂)(Ω̂)−1apq(θ̂)

and Ω̂ = Ω̂

tr{Ω̂}
44 {τ̂pq = 1

4
aH
pq(θ̂)Ω̂

−1
apq(θ̂)}p<q,(p,q)∈{1,...,M}2

5 end

3. CALIBRATION IN 3DC REGIME

3.1. 3DC calibration regime

We consider calibration of radio interferometry stations where an-

tennas are enclosed in a compact array and direction dependent ef-

fects are dominant [28]. If we intend to calibrate the data at differ-

ent frequencies, then a particular decomposition of the Jones matrix

is [29, 30]

J
[f ]
i,p(θ

[f ]
i,p) = Gp(gp)H

[f ]
i,pZ

[f ]
i,p(α

[f ]
i )F

[f ]
i (ϑ

[f ]
i ) (2)

for i ∈ {1, . . . , D}, p ∈ {1, . . . ,M}, f ∈ F = {f1, . . . , fF }
and θ

[f ]
i,p = [ϑ

[f ]
i , gT

p ,α
[f ]T

i ]T . Each individual Jones term and its

corresponding effect is described in the following:

3.1.1. Ionospheric effects

While travelling through a charged medium as the ionosphere, the

incoming wave is affected by a phase delay due to refraction, and

written as [31]

Z
[f ]
i,p(α

[f ]
i ) = exp

(

jϕ
[f ]
i,p

)

I2

where ϕ
[f ]
i,p = η

[f ]
i u

[f ]
p + ζ

[f ]
i v

[f ]
p in which α

[f ]
i = [η

[f ]
i , ζ

[f ]
i ]T ∝

f−2 [32] stands for the apparent position shift in the source location

and r
[f ]
p = [u

[f ]
p , v

[f ]
p ]T is the known position vector of the p-th an-

tenna in wavelength units. Therefore, we deduce that ϕ
[f ]
i,p ∝ f−1

[33]. Propagation through the upper part of the atmosphere also

results in a rotation of the polarization plane, called Faraday rota-

tion [34],

F
[f ]
i (ϑ

[f ]
i ) =

[

cos(ϑ
[f ]
i ) − sin(ϑ

[f ]
i )

sin(ϑ
[f ]
i ) cos(ϑ

[f ]
i )

]

where the Faraday rotation angle ϑ
[f ]
i ∝ f−2 [29] is the same for all

antennas due to the compact geometry of the array [28].

3.1.2. Instrumental effects

Receiver electronics introduce direction and frequency indepen-

dent effects [29], leading to a complex sensor gain matrix, noted

Gp(gp) = diag{gp}.
Finally, let us note that H

[f ]
i,p is a known matrix given by electro-

magnetic modeling and a priori information (calibrator sources and

antenna positions) [21]. Let us recall that the combined effect of all

individual perturbations along a particular signal path is represented

by a global Jones matrix, as shown in (2).

3.2. Mono-frequency case

In 3DC regime, calibration amounts to estimate the physical param-

eters θi,p which appear in the structured Jones matrices (2). In the

mono-frequency case, we use an alternating least squares approach

to estimate unknowns sequentially [35], by optimizing a cost func-

tion w.r.t. one parameter while fixing the others. The global frame of

the structured calibration algorithm (SCA) is exposed hereafter, for

one given i and p, and details can be found in [13]. Let us note that

ϕ̂i = [ϕ̂i,1, . . . , ϕ̂i,M ]T and Λ = [r1, . . . , rM ].

3.3. Multi-frequency calibration algorithm

The aim of calibration in a multi-frequency scenario is to esti-

mate the parameter vector of interest ǫ = [ǫ[f1]
T

, . . . , ǫ[fF ]T ,gT ]T

where ǫ[f ] = [ϑ
[f ]
1 , . . . , ϑ

[f ]
D ,α

[f ]T

1 , . . . ,α
[f ]T

D ]T and g = [gT
1 , . . . ,g

T
M ]T .

To do so, we introduce the following cost function

l
[f ](ǫ[f ]) =

D
∑

i=1

l
[f ]
i (ǫ

[f ]
i ) (3)



SCA: Structured calibration algorithm

input : D, M , B, Ci, x, Ĵi,p as output of NSCA

output : θ̂i,p

initialize: θ̂i,p ← θi,pinit

1 while stop criterion unreached do

22 ϑ̂i = argminϑi

∑M

p=1 ||Ĵi,p −GpHi,pZi,pFi(ϑi)||2F
33 ĝp = argmingp

∑D
i=1 ||Ĵi,p −Gp(gp)Hi,pZi,pFi||2F

44 ϕ̂i,p = argminϕi,p
||Ĵi,p −GpHi,pZi,p(ϕi,p)Fi||2F

55 α̂T
i =

ϕ̂T
i ΛH







∑M
p=1 v

2
p −∑M

p=1 upvp

−∑M

p=1 vpup

∑M

p=1 u
2
p







∑

M
p=1 u2

p

∑

M
p=1 v2

p−(
∑

M
p=1 upvp)2

6 end

in which l
[f ]
i (ǫ

[f ]
i ) =

M
∑

p=1

||Ĵ[f ]
i,p −GpH

[f ]
i,pZ

[f ]
ip

(α
[f ]
i )F

[f ]
i (ϑ

[f ]
i )||2F

with ǫ
[f ]
i = [ϑ

[f ]
i ,α

[f ]T

i ]T . Prior information on Ĵ
[f ]
i,p for i ∈

{1, . . . , D}, p ∈ {1, . . . ,M} and f ∈ F is provided by the output

of NSCA.

We wish to distributedly solve the following constrained opti-

mization problem thanks to a network of agents

{ǫ̂[f ]}f∈F , ẑ = argmin
ǫ[f1],...,ǫ[fF ],z

∑

f∈F

l
[f ](ǫ[f ]) (4)

s.t. ǫ
[f ]
i = B

[f ]
zi, i ∈ {1, . . . , D}, f ∈ F

where B[f ] = 1
f2 I3 is the known frequency model, zi is an un-

known associated global variable, independent w.r.t. frequency and

shared by all agents, and z = [zT1 , . . . , z
T
D]T . To solve (4), we use

a consensus optimization scheme as in the ADMM procedure [16].

Instead of considering the original objective function (3), we study

the following augmented Lagrangian

L(ǫ[f1], . . . , ǫ[fF ]
, z,y

[f1], . . . ,y
[fF ]) =

∑

f∈F

D
∑

i=1

L
[f ]
i

(

ǫ
[f ]
i , zi,y

[f ]
i

)

where L
[f ]
i

(

ǫ
[f ]
i , zi,y

[f ]
i

)

= l
[f ]
i

(

ǫ
[f ]
i

)

+ h
[f ]
i

(

ǫ
[f ]
i , zi,y

[f ]
i

)

and

h
[f ]
i

(

ǫ
[f ]
i , zi,y

[f ]
i

)

= y
[f ]T

i

(

ǫ
[f ]
i −B

[f ]
zi

)

+
ρ

2
||ǫ[f ]i −B[f ]

zi||22.

We note y[f ] = [y
[f ]T

1 , . . . ,y
[f ]T

D ]T the associated Lagrange pa-

rameters (or dual variables) and ρ > 0 a penalty factor. We no-

tice separability of the Lagrangian w.r.t. source direction but above

all, separability w.r.t. frequency, meaning that each agent solves a

subproblem locally at a given frequency. The ADMM consists in

updating sequentially the three following quantities:

•
(

ǫ̂
[f ]
i

)t+1

= argmin
ǫ
[f]
i

L
[f ]
i

(

ǫ
[f ]
i , (ẑi)

t
,
(

ŷ
[f ]
i

)t
)

(5)

performed locally by each agent for i ∈ {1, ..., D}

• (ẑi)t+1 = argmin
zi

∑

f∈F

L
[f ]
i

(

(

ǫ̂
[f ]
i

)t+1

, zi,
(

ŷ
[f ]
i

)t
)

(6)

performed globally for i ∈ {1, ..., D}

•
(

ŷ
[f ]
i

)t+1

=
(

ŷ
[f ]
i

)t

+ ρ

(

(

ǫ̂
[f ]
i

)t+1

−B
[f ] (ẑi)

t+1

)

(7)

performed locally by each agent for i ∈ {1, ..., D}

where t is the iteration counter. Minimization (6) needs access to

local solutions from all agents, i.e., at all frequencies, and leads to

the following closed-form expression [16, 19],

ẑi =





∑

f∈F

ρB
[f ]T

B
[f ]





−1 



∑

f∈F

B
[f ]T (y

[f ]
i + ρǫ

[f ]
i )



 . (8)

Minimization (5) is addressed iteratively. To this end, we compute

the gradient of L
[f ]
i (ǫ

[f ]
i , zi,y

[f ]
i ) w.r.t. ǫ

[f ]
i , which induces

∂L
[f ]
i (ǫ

[f ]
i , zi,y

[f ]
i )

∂ϑ
[f ]
i

= [y
[f ]
i ]1+ρ(ϑ

[f ]
i −

1

f2
[zi]1)+

M
∑

p=1

tr
{

S
[f ]
i,p + S

[f ]H

i,p

}

(9)

where S
[f ]
i,p = −GpH

[f ]
i,pZ

[f ]
i,p

∂F
[f]
i

(ϑ
[f]
i

)

∂ϑ
[f]
i

Ĵ
[f ]H

i,p , and

∂L
[f ]
i (ǫ

[f ]
i , zi,y

[f ]
i )

∂η
[f ]
i

= [y
[f ]
i ]2+ρ(η

[f ]
i −

1

f2
[zi]2)+

M
∑

p=1

tr
{

D
[f ]
i,p +D

[f ]H

i,p

}

(10)

where D
[f ]
i,p = ju

[f ]
p Z

[f ]∗

i,p M
[f ]
i,p and M

[f ]
i,p = Ĵ

[f ]
i,pF

[f ]T

i H
[f ]H

i,p GH
p .

Likewise, we have

∂L
[f ]
i (ǫ

[f ]
i , zi,y

[f ]
i )

∂ζ
[f ]
i

= [y
[f ]
i ]3+ρ(ζ

[f ]
i −

1

f2
[zi]3)+

M
∑

p=1

tr
{

V
[f ]
i,p +V

[f ]H

i,p

}

(11)

where V
[f ]
i,p = jv

[f ]
p Z

[f ]∗

i,p M
[f ]
i,p. Using eqs. (9) to (11), we obtain ǫ̂

[f ]
i

with a root-finding algorithm or thanks to standard numerical opti-

mization tools as Newton or gradient descent-type algorithm [36].

Estimation of the gains gp is done as minimization of the fol-

lowing least squares cost function

κ(gp) =
∑

f∈F

D
∑

i=1

||Ĵ[f ]
i,p −Gp(gp)H

[f ]
i,pZ

[f ]
i,pF

[f ]
i ||2F

leading to the following estimate of each complex gain element for

k ∈ {1, 2}

[ĝp]k =
(

∑

f∈F

D
∑

i=1

[W
[f ]∗

i,p ]k,k
)−1 ∑

f∈F

D
∑

i=1

[X
[f ]∗

i,p ]k,k (12)

where X
[f ]
i,p = R

[f ]
i,pĴ

[f ]H

i,p and W
[f ]
i,p = R

[f ]
i,pR

[f ]H

i,p in which R
[f ]
i,p =

H
[f ]
i,pZ

[f ]
i,pF

[f ]
i . The scheme of the proposed multi-frequency struc-

tured calibration algorithm (MSCA) is described below.

4. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed MSCA

with the mono-frequency case, i.e., SCA in which frequency diver-

sity is not taken into account. We recall that radio astronomy ob-

servations are affected by the presence of outliers. Thus, we also

compare our robust approach with an algorithm based on a classical

Gaussian noise assumption [8], which amounts to solve a non-linear

least squares problem. First, in Fig. 1, we plot the mean square error

(MSE) of η
[f1]
1 as a function of the signal-to-noise ratio (SNR), the



MSCA: Multi-frequency structured calibration algorithm

input : D, M , F , r
[f ]
p , H

[f ]
i,p, Ĵ

[f ]
i,p as output of NSCA for

i ∈ {1, . . . , D}, p ∈ {1, . . . ,M} and f ∈ F
output : ǫ̂

initialize: ǫ̂← ǫinit, ẑ← zinit, {ŷ[f ]← y
[f ]
init}f∈F

1 while stop criterion unreached do

2 while stop criterion unreached do

3 while stop criterion unreached do

44 Obtain {ϑ̂[f ]
i }i=1,...,D locally with (9)

55 Obtain {η̂[f ]
i }i=1,...,D locally with (10)

66 Obtain {ζ̂ [f ]i }i=1,...,D locally with (11)

7 end

88 Obtain {ẑi}i=1,...,D globally with (8)

99 Obtain {ŷ[f ]
i }i=1,...,D locally with (7)

10 end

1111 Obtain {ĝp}p=1,...,M with (12)

12 end

behavior being the same for any other parameter of ǫ. We compare

the estimation performance for different number of frequencies F
and notice better statistical performance when multi-frequency ro-

bust calibration is performed. Robust calibration based on the Stu-

dent’s t [9] is not exposed in the simulations due to a different model

which is not adapted to the 3DC regime.

In the following figures, we use Meqtrees [29] to generate the

data model, the observations and compare its least squares solver to

MSCA. Here, we choose to correct for Faraday rotation matrices,

which are the only introduced perturbations in the observations. We

consider M = 7 antennas (KAT-7 instrument), D = 1, D′ = 16
weak realistic background sources taken from the SUMSS survey

using a spectral index of 0.7. The full duration of the observation

is 12 hours, for 60 seconds integration time per data sample. Af-

ter calibration and subtraction of the bright calibrator source, a dirty

image, namely the corrected residual, is constructed with Meqtrees

using lwimager. Fig. 2 gives the corrected residual image at 895
MHz in a small area surrounding the calibrator, whose position cor-

responds to the red cross. Fig. 3 gives the recovered flux for one

of the D′ weak outlier sources. Therefore, we notice better flux es-

timation of weak background sources and better calibrator removal

using joint frequency dependent calibration with MSCA compared

to a frequency independent calibration.

5. CONCLUSION

This paper introduces a robust ML based calibration technique in

the context of radio interferometry. Robustness is addressed thanks

to a compound-Gaussian noise modeling and a particular scenario

is studied, i.e., the 3DC calibration regime. Variation of parameters

w.r.t. frequency imposes additional constraints which are considered

in an ADMM-based distributed algorithm. We show in the simula-

tions the advantages of the proposed algorithm in regards to standard

mono-frequency and/or non-robust scenario.
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