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ABSTRACT

In this paper, we present a consensus-based framework for de-

centralized estimation of deterministic parameters in wireless

sensor networks (WSNs). In particular, we propose an opti-

mization algorithm to design (possibly complex) sensor gains

in order to achieve an estimate of the parameter of interest

that is as accurate as possible. The proposed design algo-

rithm employs a cyclic approach capable of handling various

sensor gain constraints. In addition, each iteration of the pro-

posed design framework is comprised of the Gram-Schmidt

process and power-method like iterations, and as a result, en-

joys a low-computational cost.

Index Terms— Alternating direction method of multi-

pliers (ADMM), consensus algorithms, decentralized estima-

tion, parameter estimation, wireless sensor networks

1. INTRODUCTION

Wireless sensor networks (WSNs) present significant poten-

tial for usage in decentralized detection and estimation due

to their many advantageous characteristics such as an inher-

ent distributed structure. While the benefits of digital trans-

mission are well-known, recent research efforts have revealed

the superiority of analog WSNs in reducing the level of dis-

tortion in distributed parameter estimation compared to their

digital counterparts [1–6]. Hence, it is no surprise that analog

WSNs have already attracted a considerable attention from

researchers—see e.g. [7–13], and the references therein.

Early works in the context of analog estimation include

the study of algorithms for data fusion in both centralized or

decentralized scenarios. For instance, the authors in [14] have

proposed an average consensus-based decentralized estima-

tion scheme for a network with both fixed and time-varying

network topology. In some recent efforts to achieve minimum

estimation error, analog amplify-and-forward and phase-

shift-and-forward transmission schemes for signal transmis-

sion from sensor to fusion center (FC) have been proposed

in [7], [8], [9], and [11], where the sensor gain optimization

is usually subject to a total power constraint. Moreover, a
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distributed parameter estimation algorithm based on alternat-

ing direction method of multipliers (ADMM [15]) has been

proposed in [16] and [17]. In this paper, we first present

an ADMM-based algorithm for estimating the parameter of

interest in a decentralized manner. We further formulate the

asymptotic variance of the estimation at each node and pro-

pose an efficient optimization framework that can deal with

complex gains of the sensors for an optimized transmission

between the nodes to effectively minimize the consensus

error variance through the network.

Graph Notation: We represent the topology of the WSN

by an undirected and connected graph G = (E ,V), consist-

ing of a finite set of vertices V = {1, . . . , n} (also called

nodes), and a set of edges E ⊆ {{i, j} : i, j ∈ V}. We

denote the edge between node i and j as {i, j}, which in-

dicates a bidirectional communication between the nodes i
and j. We further assume that the sensor connections in G
are time-invariant and the transmissions are always success-

ful. We define the set of neighbors of node i including itself

as Ni , {j ∈ V : {i, j} ∈ E}. The degree of the ith node is

given by di = |Ni|.

2. SYSTEM AND FUSION MODEL

We consider a network with N single-antenna nodes each

of which observing an unknown (but deterministic) param-

eter θ ∈ C according to the linear model zi = θ + vi for

node i, where vi is the observation noise and has the distri-

bution CN (0, σ2
v,i). We further assume that the observation

noise is independent from one node to another. Moreover, we

assume that the channel state information (CSI) of the net-

work is available at the nodes (at least for the neighbors).

The decentralized estimation scheme operates as follows.

The ith node amplifies its observation with an adjustable

complex gain ai ∈ C and transmits this amplified observa-

tion to its immediate neighbors (i.e., k ∈ Ni). The received

signal at a generic node k from its neighbor node i can

be written as yk,i = hk,iaizi + nk,i, for k ∈ Ni, where

hk,i ∈ C is the channel coefficient between node k and

i, and nk,i denotes the transmission noise. Moreover, we

assume that the transmission noise is zero-mean Gaussian

noise with variance σ2
n and is uncorrelated from one trans-
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mission to another. Let Si = {si1, . . . , si|Ni|
} denote the

ordered sequence of all nodes neighboring the ith node. The

collection of all observations received at node i can be ex-

pressed as zi = 1θ + vi, where zi = [zsi1 , . . . , zsi|Ni|
]T , and

vi = [vsi1 , . . . , vsi|Ni|
]T is the noise vector with covariance

Vi = E{viv
H
i } = Diag{σ2

v,si1
, . . . , σ2

v,si
|Ni|

}. Consequently,

the received signal vector, this time at the ith node, from its

neighboring nodes can be expressed as

yi = HiDizi + ni = Hiaiθ +HiDivi + ni
︸ ︷︷ ︸

,wi

, (1)

where ai = [asi1 , . . . , asi|Ni|
]T contains the sensor gains to be

optimized, Di = Diag(ai), yi = [yi,si1 , . . . , yi,si|Ni|
]T , Hi =

Diag([hi,si1
, . . . , hi,si

|Ni|
]T ), and ni = [ni,si1

, . . . , ni,si
|Ni|

]T

is the transmission Gaussian noise vector with covariance

Rni
= E{nin

H
i } = σ2

nI|Ni|. Moreover, the covariance

of the combined Gaussian noise term wi, in (1) is given by

Ci = E{wiw
H
i } = HiDiViD

H
i HH

i +Rni
.

A drawback of such an amplify-and-forward scheme

(governed by variable sensor gains) is that all nodes neighbor-

ing the ith node will receive the amplified noisy observation

yi,k, k ∈ Ni, and incorporate that single observation into their

estimation. Hence, the aggregate global data streams are no

longer uncorrelated. In order to further reduce the redundant

information in the network, we use the following data com-

pression strategy: Each node starts with initializing a local in-

formation value based on (1). Namely, the ith node calculates

Ii = aHi HH
i C−1

i Hiai and transmits Ii to its neighboring

nodes. Also, note that Ii is an information measure due to the

fact that the inverse of Ii provides the variance of the max-

imum likelihood estimation (MLE) of the parameter. Next,

each node will select one node in its neighborhood with the

highest information value and only the selected node will re-

tain the received data from that node, and all other nodes will

discard the associated received signal to that node. For in-

stance, consider that the jth node has the highest information

value among the ith node’s neighborhood. Then, all nodes

k ∈ Ni\{j} will discard yk,i but the jth one. Let {Ti}Ni=1

denote the row selection matrix associated with the ith node,

which points to rows of yi that are to be discarded. Then,

the stacked received data after compression at each node can

be described as y′
i = Tiyi. And, the compressed global ob-

servation vector can be written as y = Haθ +HDv +Gn,

where a = [a1, . . . , aN ], D = Diag{a}, v = [v1, . . . , vN ]T

whose covariance matrix is V, G = blkdiag({Ti}Ni=1),
H = [T1Ω1, . . . ,TnΩN ]T where Ωk is a |Nk| × N ma-

trix whose elements are [Ωk]ij = hkj , if j ∈ Sk and

j = ski ; otherwise, [Ωk]ij = 0. Also, let the combined global

noise term be w = HDv +Gn whose covariance matrix

C = E{wwH} = HDVDHHH + Σ where Σ = σ2
nIM ,

and M = 2|E| − r in which r represents the total number of

discarded communications.

The ML estimate of θ given the linear model y = Haθ+
w can thus be expressed as

θ̂ML = (aHHHC−1Ha)−1aHHHC−1y

=

(
N∑

i=1

aHi HH
i CiHiai

)−1
N∑

i=1

aHi HH
i C−1

i yi. (2)

where the ML estimate θ̂ML is unbiased (i.e., E{θ̂ML} = θ)

with variance,

Var(θ̂ML) =

(
N∑

i=1

aHi HH
i C−1

i Hiai

)−1

(3)

=
(
aHHHC−1Ha

)−1
. (4)

2.1. ADMM-Aided Distributed ML Estimation

The goal now is to facilitate computing (2) in a distributed

manner. In order to do so, we use an average-consensus

scheme based on the alternating direction method of multi-

pliers (ADMM). Particularly, the following ADMM update

equations were derived in [18] to achieve an average consen-

sus in the network:

yk+1
i =

1

1 + 2ρ|Ni|
(
ρ|Ni|yki + ρ

∑

j∈Ni

ykj − λk
i + xi

)
, (5)

λk+1
i = λk

i + ρ
(
|Ni|yk+1

i −
∑

j∈Ni

yk+1
j

)
, (6)

where yk+1
i is the ith node’s local copy of the global vari-

able (which will eventually converge to the average value

of the initial observations, x̄ = (1/n)
∑n

i=1 xi), xi is the

initial observation of node i, and ρ > 0 is an arbitrary con-

stant. As it can be seen from the above update equations,

the updates of each node only depend on the local infor-

mation, and the algorithm is hence fully distributed. Next,

we use this ADMM-based distributed average consensus

scheme to achieve the ML estimate of the parameter. Let

Ii(0) , aHi HH
i C−1

i Hiai be the information value at node

i, and Pi(0) , aHi HH
i C−1

i yi be the corresponding state in-

formation matrix. Therefore, each node can (asymptotically)

compute the global ML estimate of θ defined in (2) by apply-

ing the distributed average consensus steps in (5) and (6) on

the Ii(0) and Pi(0). More precisely, each node updates its

information value and the state information matrix according

to (5)-(6) (by substituting xi in (5) with Ii(0) and Pi(0)) and

will obtain a local estimate of the parameter of interest at each

iteration by computing θ̂iML(k) = I−1
i (k)Pi(k). Due to the

fact that, Ic , limt→∞ Ii(t) = 1
N

∑N

i=1 a
H
i HH

i C−1
i Hiai,

and Pc , limt→∞ Pi(t) = 1
N

∑N

i=1 a
H
i HH

i C−1
i yi, each

node will (asymptotically) achieve the ML estimate of the

unknown parameter:

θ̂iML = I−1
c Pc =

∑N

i=1 a
H
i HH

i C−1
i yi

∑N

i=1 a
H
i HH

i C−1
i Hiai

. (7)



In addition, it can be easily shown that the variance of the es-

timation at each node converges to that of the global ML esti-

mation variance in (3); namely that limt→∞ Var(θ̂iML(t)) =

(
∑N

i=1 a
H
i HH

i C−1
i Hiai)

−1. In the next section, we devise a

low-cost cyclic optimization approach to design the complex

gains at each node.

3. SENSOR GAIN OPTIMIZATION

Hereafter, we address the problem of designing the (possibly

complex) sensor gains a ∈ CN in order to minimize the vari-

ance of the consensus-based estimation given in (3). As it

was shown in the previous section, the variance of the esti-

mation at each node asymptotically converges to that of the

global ML estimate of the unkown parameter. Our goal here

is to minimize Var(θ̂ML) by considering the the sensor gain

vector a as the optimization variable. In particular, the sensor

gain optimization can be formulated as

max
a

aHHH
(
HDVDHHH +Σ

)−1
Ha (8)

s. t. a ∈ Ω, (9)

where Ω denotes the search space of the sensor vector a.

Note that as D = Diag{a}, the core matrix of the seemingly

quadratic objective in (8) is a function of sensor gains a. We

will show that, by utilizing an over-parametrization approach,

the above optimization problem can be approached via a se-

quence of quadratic optimization problems.

Let η = η0 − aHHH
(
HDVDHHH +Σ

)−1
Ha, where

η0 sufficiently large to keep η positive for all a (e.g., η0 >
N ||H||2F/λmin{Σ}). We will consider the following equiva-

lent optimization problem in lieu of (8):

min
a

η (10)

s. t. a ∈ Ω. (11)

In order to tackle (10), let g(y, a) , yHRy, where y is an

auxiliary vector variable, and

R ,

(

η0 aHHH

Ha HDVDHHH +Σ

)

. (12)

Note that eH1 R−1e1 = η−1, where e1 = (1 0 . . . 0)T is the

first standard basis of RM+1. Now consider the optimization

problem:

min
a,y

g(y, a) (13)

s. t. yHe1 = 1, a ∈ Ω. (14)

For fixed a, the minimizer y of (13) is given by y =
(
eH1 R−1e1

)−1
R−1e1 (see Result 35 in [19, p. 354]), which

is in fact a scaled version of the first column of R−1 (to satisfy

(14)). Observe that y is a scaled version of the solution to the

Table 1 The Proposed Sensor Gain Optimization Approach

Step 0: Initialize the auxiliary vector y with a random vector in

C
M+1 such that y1 = 1. Initialize a ∈ Ω.

Step 1: Employ the quadratic formulation in (16), and particularly

the power method-like iterations in (17) to update the sensor gain

vector a (until convergence).

Step 2: Update y using y =
(

eH

1 R−1e1

)

−1
R−1e1, or by employ-

ing the fast approach discussed below (14).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is

satisfied, e.g. |f(a(k)) − f(a(k+1))| ≤ ξ for some ξ > 0, where

k denotes the outer-loop iteration number, and f(.) is defined as

f(a) = η.

linear system Ry = e1, and in particular that y is a scaled

version of the vector orthogonal to all rows but the first row

of R. A fast approach to calculate y is therefore to use the

Gram-Schmidt process (applied to the rows except the first

row of R) followed by a scaling.

A more important observation, establishing the equiva-

lence of (10) and (13), is that for the minimizer y of (13) one

can easily verify that g(y, a) = η. As a result, each step of

the cyclic optimization of (13) with respect to y and a leads

to a decrease of η (and ultimately convergence, as η is lower

bounded). In addition, the minimization of (13) with respect

to a, and for fixed y, boils down to a quadratic optimization

problem. Note that for a feasible y of (13), we can partition

y as yT ,
(
1 ỹT

)
. Therefore,

yHRy = C1+ (15)
(

a

1

)H
( (

HH ỹỹHH
)
⊙V HH ỹ

ỹHH 0

)

︸ ︷︷ ︸

,Q

(
a

1

)

where we have used the identity ỹHHDVDHHH ỹ =
aH
((
HH ỹỹHH

)
⊙V

)
a. Also note that C1 = η0 + ỹHΣỹ

is invariant with respect to the sensor gain vector a. Minimiz-

ing (13) with respect to a can thus be done by considering:

max
a

(
a

1

)H

Q̃

(
a

1

)

(16)

s. t. a ∈ Ω.

where Q̃ , λIM − Q with λ > λmax(Q), and Ω is as-

sumed to impose a finite/fixed energy constraint on a (e.g.,

||a||22 = N ). Interestingly, a monotonically increasing ob-

jective of (16), and equivalently a monotonically decreasing

objective of (13), can be obtained using the following power

method-like iterations (see [20–23] for details):

min
a(t+1)

∥
∥
∥
∥
∥

(
a(t+1)

1

)H

− Q̃

(
a(t)

1

)
∥
∥
∥
∥
∥
2

(17)

s. t. a(t+1) ∈ Ω,



0 5 10 15 20 25 30 35 40 45 50

Number of Nodes

10-4

10-3

10-2

10-1

100
R

un
tim

e 
(s

ec
)

Proposed: phase-shift only
SDP-based approach

(a)

0 5 10 15 20 25 30 35 40 45 50

Number of Nodes

10-2

10-1

E
st

im
at

io
n 

V
ar

ia
nc

e

Proposed: phase-shift only
SDP-based approach

(b)

Fig. 1. Comparison of (a) the runtime and (b) the estimation variance of the proposed method and the SDP-based approach

of [11]. The proposed algorithm exhibits significantly lower computational cost, while achieving a similar estimation variance.
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Fig. 2. Convergence of the ADMM-based ML estimation.

where t is the iteration number, and a(0) is the current

value of a. Two useful constrained scenarios for the sen-

sor gain optimization in (17) are as follows. Let, â(t) =

(IM 0M×1) Q̃

(
a(t)

1

)

. The recursions of (17) for a fi-

nite or fixed energy scenario can be expressed as a(t+1) =
(√

N ||â(t)||2
)

â(t). In addition, for the phase-shift only case

(i.e. with |ai| = 1 for i = 1, . . . , N ), the recursion takes

the form a(t+1) = exp
(
jarg

(
â(t)
))

. Note that the latter

scenario can be further studied as to a Unimodular Quadratic

Program (UQP); see [20–23]. Finally, the proposed method

is summarized in Table I.

4. NUMERICAL RESULTS

In this section, we investigate the performance of our pro-

posed sensor gain optimization algorithm. We compare our

sensor gain optimization algorithm (Table I) with the state-

of-the-art semidefinite programming (SDP) based approach

of [11]. Each measurement is averaged over 300 random

channel realizations. Fig. 1(a) shows a comparison of the

computational cost (machine runtime) between our algorithm

and the SDP-based approach in [11]. It is observed from Fig.

1(a) and Fig. 1(b) that although the two algorithms yield sim-

ilar estimation variance, our proposed optimization algorithm

has a significantly lower computational burden. For example,

with N = 50 nodes, one can observe that the runtime of our

algorithm is less than 1% of the runtime associated with the

SDP-based approach. This is particularly of importance in

WSNs since not only the processing resources of the nodes

are limited but also that the environment parameters (e.g., the

channels) might change and need re-assessments frequently.

Hence, it is important for the network to be able to adapt to the

new environment as quickly as possible with minimal cost.

Our proposed two-stage algorithm also enables the nodes

to obtain the global ML estimation of the parameter based

on their local information by applying the distributed fusion

scheme algorithm described in subsection 2.1. Fig. 2 illus-

trates the simulation results for this ADMM-based decentral-

ized estimation and the convergence of the proposed decen-

tralized MLE algorithm to that of the global MLE for a net-

work with N = 16, and θ = 10. It can be observed that the

local estimate of each node θ̂iML(k) converges to the global

MLE of the parameter computed in (2), and a consensus is

achieved very quickly.

5. CONCLUSION

A sensor gain optimization for consensus-based decentral-

ized ML estimation in WSNs was proposed. The presented

framework enable the network to quickly converge to the

global MLE. Moreover, the proposed sensor gain optimiza-

tion technique can handle various sensor gain constraints very

efficiently—an important feature for large-scale WSNs.
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