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ABSTRACT

Mutual Information is the metric that is used to perform link

adaptation, which allows to achieve rates near capacity. The

computation of adaptive transmission modes is achieved by

employing the mapping between the Signal to Noise Ratio

and the Mutual Information. Due to the high complexity of

the computation of the Mutual Information, this process is

performed off-line via Monte Carlo simulations, whose re-

sults are stored in look-up tables. However, in Index Modu-

lations, such as Spatial Modulation or Polarized Modulation,

this is not feasible since the constellation and the Mutual In-

formation are channel dependent and it would require to com-

pute this metric at each time instant if the channel is time

varying. In this paper, we propose different approximations

in order to obtain a simple closed-form expression that allows

to compute the Mutual Information at each time instant and

thus, making feasible the link adaptation.

Index Terms— Mutual Information, Spatial Modulation,

Polarized Modulation, Index Modulations, Link Adaptation

1. INTRODUCTION

Link Adaptation in modern communications is performed

by computing the Effective Signal to Noise (SNR) Mapping

(ESM) based on Mutual Information (MI-ESM) [1]–[3]. For

instance, the work described in [4] describes the procedure

of computing MI-ESM in Single-Input Single-Output sys-

tems for IEEE 802.16e standard. Analogously, authors of

[5] describe the MI-ESM algorithm for Long Term Evolution

(LTE) networks. All of these works have in common the com-

putation of the Mutual Information (MI), which involves an

expectation of a function of a Random Variable (RV) without

closed-form solution.

In the literature, the computation of the expectation of MI

is performed off-line via Monte Carlo simulations and the re-

sults are stored into a look-up table (LUT). After this step, the

received SNR of each symbol within a codeblock or frame is

mapped to the LUT to obtain the MI corresponding to the

SNR.

This work is funded by projects MYRADA (TEC2016-75103-C2-2-R),

ELISA (TEC2014-59255-C3-1-R) and TERESA (TEC2017-90093-C3-1-R).

In Index Modulations (IM), such as Spatial Modulation

[6] or Polarized Modulation [7], the information is transmit-

ted not only with a fixed constellation, such as Quadrature

Amplitude Modulation (QAM), but also with the channel

hops. Due to the dependence on the channel, the MI com-

putation cannot be performed off-line since the expressions

contain the channel realization [8]. The solution is to compute

the MI curve in each time instant, depending on the channel

realization. Due to the high computational complexity of MI

computation, this approach is not feasible.

This paper presents closed-form expressions based on dif-

ferent order approximations of the MI of IM. Based on the

works [9]–[11], which compute the capacity of IM, we aim at

solving the difficulty of finding a closed-form expression of

MI. Thanks to this expression, we are able to compute the MI

at each time instant with much less computational complexity

and making the problem of adaptive IM affordable. Hence,

the MI estimated is used to select the Modulation and Coding

Scheme in the link adaptation algorithm process.

2. SYSTEM MODEL AND MUTUAL INFORMATION

Given a discrete time instant, the IM over an arbitrary

Multiple-Input Multiple-Output (MIMO) channel realization,

with t inputs and r outputs, is defined as

y =
√
γHx+w, (1)

where y ∈ C
r is the received vector, γ is the average SNR,

x = ls, l is the all-zero vector except at position l that is 1,

H = [h1 . . . ht] ∈ Cr×t is the channel matrix, l ∈ [1, t] is

the hopping index, s ∈ C is the complex symbol from the

constellation S. The AWGN noise is modeled as vector w ∈
Cr ∼ CN (0, Ir). In other words, x has only one component

different from zero (lth component) and its value is s; that is,

the transmitted symbol hops among the different channels.

Differently from previous works, in this paper we do not

analyze the statistics of H, as we are only interested in the MI

given a channel realization. H models the effects and specific

impairments of the employed domain (spatial, polarization,

frequency, etc.).
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h(s, l|y) = −
∑

s∈S

t
∑

l=1

∫

Y
fS,L,Y (s, l,y) log2

(

fS,L|Y (s, l,y)
)

dy =
∑

s∈S

t
∑

l=1

∫

Y
fS,L,Y (s, l,y) log2

(

fY (y)

fS,L,Y (s, l,y)

)

dy

=
∑

s∈S

t
∑

l=1

∫

Y
fY |S,L(y, s, l)pS(s)pL(l)× log2

(

∑

s′∈S
∑t

l′=1 fY |S,L(y, s
′, l′)pS(s = s′)pL(l = l′)

fY |S,L(y, s, l)pS(s)pL(l)

)

dy

=
1

tS

∑

s∈S

t
∑

l=1

IEY |S,L

{

log2

(

∑

s′∈S
∑t

l′=1 fY |S,L(y, s
′, l′)

fY |S,L(y, s, l)

)}

(3)

Since the transmitted vector is determined by (s, l), it is

possible to rewrite (1) as

y =
√
γhls+w. (2)

Thus, the MI between the received signal and (s, l) is ex-

pressed as

I(y; s, l) = I(y; s|l) + I(y; l)

= H(s|l)− h(s|l,y) +H(l)− h(l|y)
= H(s) +H(l)− h(s, l|y)

(4)

where the third equality assumes that s and l are independent

RV, H(X) = −∑x∈X
pX (x) log2 (pX (x)) is the entropy of X

and h(X) = −
∫∞
−∞ fX (x) log2 (fX (x)) dx is the differential

entropy of X . Note that, in contrast to [11], where the capacity

is obtained, in our case the symbol s is not maximized and

belongs to a particular constellation.

The entropy of s and l is expressed as H(s) = log2 S
and H(l) = log2 t, where S is the number of symbols defined

in the constellation. The expression of the differential entropy

h(s, l|y) is denoted in (3), where Y is the domain of y, IEX {·}
is the expectation of X , fS,L,Y (s, l,y) is the joint probability

density function (pdf) of s, l and y, fY |S,L(y, s, l) is the con-

ditional pdf of y conditioned to s and l, fY (y) is the pdf of y,

pS(s) = 1/S and pL(l) = 1/t are the probabilities of symbol

s and index l, respectively,
∫

Y dy
.
=
∫

Y1

· · ·
∫

Yr
dy1 . . . dyr,

and Yi is the domain of the ith component of y.

The pdf of y conditioned to s and l is obtained by as-

suming s and l to be deterministic in (2). In this case, it

is clear that y is a multivariate complex Gaussian RV, with

mean equal to
√
γhls and identity covariance. Thus, the con-

ditioned pdf is expressed as

fY |S,L(y, s, l) =
1

πr
e−‖y−√

γhls‖2

. (5)

Note that we assume that s and l are equiprobable. By substi-

tuting (5) in (3), the expectation can be described as

IEY |S,L

{

log2

(

∑

s′∈S
∑t

l′=1 fY |S′,L′(y, s′, l′)

fY |S,L(s, l,y)

)}

= IEW

{

log2

(

∑

s′∈S

t
∑

l′=1

e
−γ

∥

∥

∥
hls+

w√
γ
−hl′s

′
∥

∥

∥

2

+γ
∥

∥

∥

w√
γ

∥

∥

∥

2

)}

= IEW ′

{

log2

(

∑

s′∈S

t
∑

l′=1

e
−γ

(

‖hls−hl′s
′+w′‖2−‖w′‖2

)

)}

,

(6)

where W ′ ∼ CN
(

0, 1
γ I
)

and, thus, the conditioned RV

Y |S, L ≡ W
′.

Computing (6) is achieved numerically by generating a

very large number of realizations of W ′ and averaging the re-

sults via Monte Carlo simulations. However, this can only be

feasible in scenarios where fixed constellations are employed.

In the case of IM, the constellation depends on the channel

realization. Hence, the expectation has to be calculated at

each time instant, requiring high computational complexity

and making the problem of link adaptation unaffordable. Our

approach overcomes this problem, since it does not require

off-line computations and presents closed-form expressions.

Once fW ′ is defined, we apply the same procedure as de-

scribed in [11], which uses the Taylor Series Expansion (TSE)

to approximate the expectation of a function by its moments.

The central moments of W ′ are defined by

µW ′
i,ℜ

= µW ′
i,ℑ

= 0

ϑn
W ′

i,ℜ
= ϑn

W ′
i,ℑ

=

{

(n− 1)! ! 1

(2γ)
n
2

= if n is even

0 if n is odd
,

(7)

where W ′
i,ℜ and W ′

i,ℑ are the real and imaginary parts of the

ith component of the RV W
′. By assuming that

gsl (w
′) = log2

(

∑

s′∈S

t
∑

l′=1

e
−γ

(

‖xsl−xs′l′+w′‖2−‖w′‖2
)

)

,

(8)



I(y; s, l) = log2(tS)−
1

tS

∑

s∈S

t
∑

l=1

log2 (Dsl)−
1

tS

∑

s∈S

t
∑

l=1

∞
∑

n=1

1

(2γ)n(2n)! !

r
∑

m=1

(

∂2ngsl
∂w

′2n
m,ℜ

(µW ′) +
∂2ngsl
∂w

′2n
m,ℑ

(µW ′)

)

(10)

r
∑

m=1

(

∂2gsl
∂w

′2
m,ℜ

(µW ′) +
∂2gsl
∂w

′2
m,ℑ

(µW ′)

)

=
4γ
∑

s′∈S
∑t

l′=1 Dsl,s′l′ log2

(

D−1
sl,s′l′

)

Dsl

− (2γ)2

log(2)

r
∑

m=1





(

∑

s′∈S
∑t

l′=1 (xm,s′l′,ℜ − xm,sl,ℜ)Dsl,s′l′

Dsl

)2

+

(

∑

s′∈S
∑t

l′=1 (xm,s′l′,ℑ − xm,sl,ℑ)Dsl,s′l′

Dsl

)2




=
−4γ log2

(

Gsl

(

DDsl,s′l′
sl,s′l′

))

Asl (Dsl,s′l′)
− (2γ)2

log(2)D2
sl

r
∑

m=1

(

D2
m,sl,ℜ +D2

m,sl,ℑ
)

,

(11)

I(2)(y; s, l) ≃ log2

(

tS

G (Dsl)

)

+ A





log2

(

Gsl

(

DDsl,s′l′
sl,s′l′

))

Asl (Dsl,s′l′)
+

γ

log(2)D2
sl

r
∑

m=1

(

D2
m,sl,ℜ +D2

m,sl,ℑ
)



 (12)

we define the TSE of function gsl(w
′) in the vicinity of

µW ′ as gsl(w
′) = T (gsl,w

′,µW ′) = PN (gsl,w
′,µW ′) +

RN (gsl,w
′, ξ), where PN is the Taylor polynomial of degree

N and RN is the remainder term of degree N . Thus, the

expectation of (6) is equal to

IEW ′ {T (gsl,w′,µW ′)} = gsl (µW ′)

+

∞
∑

n=1

1

(2γ)n(2n)! !

r
∑

m=1

(

∂2ngsl
∂w

′2n
m,ℜ

(µW ′) +
∂2ngsl
∂w

′2n
m,ℑ

(µW ′)

)

.
= PN (gsl,w

′,µW ′) +RN (gsl,w
′, ξ) ,

(9)

where ξ ∈ [µW ′ ,w′] and

PN (gsl,w
′,µW ′) = IEW ′ {PN (gsl,w

′,µW ′)} = gsl (µW ′)

+

⌊N/2⌋
∑

n=1

1

(2γ)n(2n)! !

r
∑

m=1

(

∂2ngsl
∂w

′2n
m,ℜ

(µW ′) +
∂2ngsl
∂w

′2n
m,ℑ

(µW ′)

)

RN (gsl,w
′, ξ) = IEW ′ {RN (gsl,w

′, ξ)} .
(13)

Hereinafter, for the sake of clarity, we introduce the following

definitions:

xsl
.
= hls

Dsl,s′l′
.
= e−γ‖xsl−xs′l′‖2

Dsl
.
=
∑

s′∈S

t
∑

l′=1

Dsl,s′l′ =
∑

s′∈S

t
∑

l′=1

e−γ‖xsl−xs′l′‖2

.

(14)

The first term of (9) is described as

gsl(µW ′) = log2

(

∑

s′∈S

t
∑

l′=1

e−‖xsl−xs′l′‖2

)

= log2 (Dsl) .

(15)

Thus, by using (9), (15) and substituting them into (4),

then the MI can be expressed in a closed-form as in (10) and

it can be approximated by considering additional terms. The

simplest expression is the first order approximation, which is

obtained by omitting the third term in (10). Consequently, the

first order approximation is denoted by

I(1)(y; s, l) ≃ log2(tS)−
1

tS

∑

s∈S

t
∑

l=1

log2 (Dsl)

= log2

(

tS

G (Dsl)

)

,

(16)



where G (Dsl) and A (Dsl) are the geometric and arithmetic

mean, respectively, i.e., G (Dsl) =
(

∏

s∈S
∏t

l=1 Dsl

)
1

tS

and

A (Dsl) =
1
tS

∑

s∈S
∑t

l=1 Dsl.

The second order approximation involves the second

derivative of gsl at xsl. Thus, after some mathematical ma-

nipulations, the second term is expressed as (11), where

Dm,sl,ℜ =
∑

s′∈S

t
∑

l′=1

(xm,s′l′,ℜ − xm,sl,ℜ)Dsl,s′l′

Dm,sl,ℑ =
∑

s′∈S

t
∑

l′=1

(xm,s′l′,ℑ − xm,sl,ℑ)Dsl,s′l′

(17)

and

Asl (Dsl,s′l′) =
1

tS

∑

s′∈S

t
∑

l′=1

Dsl,s′l′

Gsl

(

DDsl,s′l′
sl,s′l′

)

=

(

∏

s′∈S

t
∏

l′=1

DDsl,s′l′
sl,s′l′

)
1

tS

(18)

are the arithmetic and geometric means over s′ and l′ by keep-

ing s and l fixed. Hence, by plugging (11) in (10), the second

order approximation of MI is described by (12).

2.1. Bounds of approximated Mutual Information

TSE applied to the expectation of a function of a RV allows to

express it as a function of its moments instead of the RV; thus,

making more efficient the computation by successive approx-

imations. An important remark is that the expectation of TSE

is lower or upper bounded by the first order approximation,

depending on its convexity or concavity, respectively.

In our case, this can be proven by examining the convexity

of (8) and applying the Jensen’s inequality, which results that

the expectation of TSE is lower bounded by (15).

This can be proven by using the Jensen’s inequality as

follows

P1 (f,x,µX ) = f (µX ) = f (IEX {x}) ≤ IEX {f(x)} . (19)

Note that, due to the minus sign in (4), the lower bound of

Jensen’s inequality becomes an upper bound, which is in-

creased by the factor log2(tS) and averaged by t and S.

3. RESULTS

In this section, we illustrate the results derived from the pre-

vious sections. We compare the performance of first and sec-

ond order approximations, i.e., (16) and (12), respectively, by

simulating the curves of MI with the integral-based expres-

sion (3), (4).

In this simulation, we generate 103 independent channel

realizations following a Rayleigh distribution and average the
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Fig. 1. Comparison of the MI for different order approxima-

tions and the integral-based expression, i.e., (16), (12) and

(4), respectively.

results to obtain a single smooth curve. Note that we do

not average over noise realizations since we obtained math-

ematical expressions that are not functions of a noise RV. We

also depict different input/outputs configurations and differ-

ent constellations. Particularly, we consider QPSK and 16-

QAM constellations.

Fig. 1 illustrates the MI of first and second order ap-

proximations, (16) and (12), respectively, compared with the

integral-based expression, (3), (4). First, as we denoted in

Section 2.1, the first order approximation is, at the same time,

the upper bound of the integral-based expression. Addition-

ally, we can observe that, as expected, the second order ap-

proximation produces tighter curve compared with the first

order approximation.

4. CONCLUSIONS

In this paper we introduce the problem of implementing link

adaptation in Index Modulations, such as Spatial Modula-

tion or Polarized Modulation, where the information is mod-

ulated with fixed constellations and dynamic channel hops.

If the channel is time varying, it is unaffordable to compute

the Mutual Information at each time instant. With our ap-

proach it is possible to obtain a smooth curve by using closed-

form expressions, decreasing the computational complexity

and allowing to perform the link adaptation. Finally, we de-

pict the first and second order approximations compared with

integral-based expression for several configurations and con-

stellation size.
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