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ABSTRACT

The 3GPP suggests to combine dual polarized (DP) antenna
arrays with the double directional (DD) channel model for
downlink channel estimation. This combination strikes a
good balance between high-capacity communications and
parsimonious channel modeling, and also brings limited feed-
back schemes for downlink channel estimation within reach.
However, most existing channel estimation work under the
DD model has not considered DP arrays, perhaps because
of the complex array manifold and the resulting difficulty in
algorithm design. In this paper, we first reveal that the DD
channel with DP arrays at the transmitter and receiver can be
naturally modeled as a low-rank four-way tensor, and thus the
parameters can be effectively estimated via tensor decompo-
sition algorithms. To reduce computational complexity, we
show that the problem can be recast as a four-snapshot three-
dimensional harmonic retrieval problem, which can be solved
using computationally efficient subspace methods. On the
theory side, we show that the DD channel with DP arrays
is identifiable under very mild conditions, leveraging identi-
fiability of low-rank tensors. Numerical simulations are em-
ployed to showcase the effectiveness of our methods.

Index Terms— Channel estimation, massive MIMO,
dual-polarized array, tensor factorization, harmonic retrieval.

1. INTRODUCTION

The dual-polarized (DP) antenna array has many appealing
features and is thus considered a key technique for next gen-
eration communications and massive MIMO [1-3]. For ex-
ample, Foschini and Gans [4] showed that the capacity for
systems with DP antennas at the transmitter can be increased
up to 50% compared to systems without polarization. Besides
the increased capacity, DP antennas have other key advan-
tages such as small size, easy installation, good interference
mitigation performance, high link reliability, and high ability
of interference filtering, just to name a few [1-4].
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In the recent releases of technical specifications suggested
by 3GPP, the DP array and the double directional (DD) chan-
nel model are considered key techniques [2]. The DD channel
model is parsimonious for multipath channels with a small
number of dominant paths, and parsimony is really essential
for designing limited feedback schemes for downlink chan-
nel estimation in massive MIMO [1-3,6]. Specifically, 3GPP
suggests that the mobile users estimate the DD channel pa-
rameters such as directions-of-arrival (DOAs), directions-of-
departure (DODs), the path loss associated with each path
and the polarization angles of the DP array, and then feed
back these parameters to the base station (BS). This strat-
egy is rather economical, as it is expected that the number
of dominant paths will be small to moderate in practical de-
ployments. On the other hand, to the best of our knowledge,
there is very limited work related to the DD-DP parameter
estimation problem. Most of the existing channel estimation
algorithms such as [5-8] do not take polarization into consid-
eration, and thus cannot be applied to this particular system.
The early algorithm proposed in [9] in the context of array
processing can only handle a small number of paths, since the
maximum number of identifiable paths in [9] is restricted by
the size of the receive array.

In this work, we focus on the parameter estimation prob-
lem under the DD channel model with DP arrays. Specifi-
cally, we first show that the DD channel with DP arrays at the
transmitter and receiver can be naturally modeled as a low-
rank four-way tensor. Leveraging this structure, we recast the
associated parameter estimation problem as a Parallel Factor
Analysis (PARAFAC) decomposition problem [10] and han-
dle it using effective tensor decomposition algorithms. To
reduce computational complexity, we also formulate chan-
nel estimation as a three-dimensional (3-D) harmonic re-
trieval problem, which can be solved by a computationally
efficient subspace method, namely, the improved multidimen-
sional folding (IMDF) method [11]. On the theory side, we
show that the channel and polarization parameters are identi-
fiable under very mild and practical conditions — even when
the number of paths largely exceeds the number of receive
antennas, a practically important case that classic DP channel
estimation algorithms as in [9] cannot cope with. Simulations



are provided to showcase the effectiveness of the proposed
methods.

2. SIGNAL MODEL

We consider a massive MIMO system, where there is one
BS equipped with an M, x M, DP uniform rectangular ar-
ray (URA) and one mobile station (MS) with an M,.-element
DP uniform linear array (ULA), which is a practical setting
that is of interest to industry [2]. Throughout the paper, we
consider DP array elements consisting of a pair of crossed
dipoles. In the literature, this type of DP array is also known
as a “cross-polarized” array [9]. The number of transmit an-
tennas is My = M, M,. The signal received by the user is
given by

x(t) =Hs(t) + n(t), t=1,--- N (D)

where s(t) € C*M:*1 ig the transmitted signal, n(#) is zero-
mean i.i.d.circularly symmetric complex Gaussian noise. By
properly arrange elements, the downlink channel matrix can
be represented as the following four-block matrix:

H(Vryvt)
= H(Hr’vt)

HV: He)

H HH: He)

c (C2MT><2M{} (2)

where H(V-Ve) ¢ CMrxM: jg a channel matrix between all
the V-polarized transmit antennas and V-polarized receive an-
tennas, and H(V=-Ho) € CMrxMe jg 3 channel matrix between
all the H-polarized transmit antennas and V-polarized receive
antennas; likewise for the other two blocks in (2).

For notational simplicity, let p € {V,,H,} and q €
{V¢, Hy}. Then, according to [1], the (p,q) subchannel ma-
trix is modeled as

H®@a — Vrdiag(lg(PH))VfI 3)

where (-)# is the conjugate transpose, V, =
Ve (01) -+ vi(Ok )], Vi = [vi(d1,01) -+ vi(Ik, i) and
B BP9V ... BT gtands for path-losses with
()T denoting the transpose. Note that {6} are DOAs,
{V} and {¢y} are azimuth and elevation DODs, respec-
tively. Throughout of this paper, we assume that the receive
and transmit antennas have the same half-wavelength inter-
element spacing. Then we have [v,(0)],, = e/7(m—1)sin(0)

and vi(Ox, pr) = Vykr ® Vg, where [x]|; denotes the
ith element of x, [V;c,k]lw — ejﬂ(lm—l)sin(sﬂk)cos(ﬁk)’lw —
()7 A 7]\/[27 — 1 and [V%k’hy — ejﬂ'(lyfl) sin(gpk)sin(ﬁk),ly —

0,---, M, —1.
Now the channel matrix in (2) can be rewritten as

| Vidiag(BY-V) VY, diag(BVT) V]

= |V, diag (8" V)V V,diag (81 )vir |- @

In this model, to determine the channel H, we only need to
estimate K DOAs, K azimuth angles, K elevation angles and

4K complex path-losses. Compared to the size of the chan-
nel, which is 4M,. M;, such parameterization is rather eco-
nomical and is suitable for massive MIMO downlink channel
estimation and limited feedback where both M; and M, (es-
pecially M) can be very large.

2.1. Challenges

Although we have explicitly written down the channel model
in (1), how to effectively estimate the parameters of interest
is still unclear. Specifically, assume that H can be estimated
at the receiver by matched filtering, i.e., H = XSH under
a pre-selected row-orthogonal pilot sequence S, where X =
[x(1),...,x(N)] and S = [s(1),...,s(N)]. Estimating the
DOA, DOD and path-loss parameters is still very challenging.
One popular type of technique to estimate parameters of the
(non-DP) DD channel is described in [5-7], where the DOA
and DOD domains are descretized to fine angle grids using
two overcomplete angle dictionaries (codebooks), denoted by
D, and D,.. Then, we have H ~ (I, ® D,.)G(I, ® D),
where G is a sparse matrix that selects out the columns asso-
ciated with the active DODs and DOAs from the dictionaries.
This way, the parameter estimation problem becomes a sparse
recovery problem that can be handled by formulations such as
ming |h— (I4®D; ®D,)g||3+ \||g|/1, where h = vec(H)
with vec(-) being the vectorization operator and g = vec(G);
and other sparse optimization algorithms such as orthogonal
matching pursuit .

The difficulty is that to ensure good spatial resolution,
both D; € CM*Pt and D, € CM-*Pr are very “fat”
matrices, where D; and D, denotes the number of angle
grids after quantization. Consequently, (I, ® D} ® D,.) is
AMiM, x 4D, D,.. If one quantizes the DOA and DOD space
(ranging from —90° to 90°) using a resolution of one de-
gree, then 4D, D, = 131,044 — which poses an extremely
hard sparse optimization problem. Many compromises, such
as coarse quantization and hierarchical or hybrid algorithms
[5,6], have been employed to circumvent this issue in the lit-
erature. However, when two-dimensional antennas are de-
ployed in both receiver and transmitter, the dictionary size
can reach 4(D;D,.)?, which is hopeless.

3. PROPOSED APPROACH

3.1. Tensor-Based Method and Identifiability

Our proposed approach starts by noticing that H is in fact a
four-way tensor of rank (at most) K; to see this, vectorize the
four blocks in H and then stack them in a tall matrix, such
that we have

H=(V;oV;oV,)B” ®)

where (-)* denotes conjugation, ® is the Khatri-Rao prod-
uct, Vo, = [vg1--Voi|, Vy = [Vy1 -+ Vy k] and



B = [/G(Vr-,vt) IB(VryHt) /G(Hrqvt) IB(HmHt)]T e C4*K_ Note
that (5) is the definition of a four-way tensor of rank < K in
matrix form [10].

By noticing the tensor structure of H, various tensor de-
composition algorithms such as those in [12, 13] can be di-
rectly applied to estimate V., V,, V. and B via solving the
following:

min ||H—

* * 2
Vr,Vm,Vy,B (Vy @ Vx @ V’r’) BTHF (6)

where || - || r is the Frobenius norm. Note that a salient feature
of tensors is that the factors are uniquely identifiable under
mild conditions, as we will explain shortly. Once V,, V,
V, and B are estimated, the parameters {GA;€7 Ok, Pk, ﬁ(p’Q)}
can be computed in closed-form. Since v, , vy and v,
are Vandermonde vectors, we may use

. 1 —

0, = sin™! (Z(‘A/f[k‘?r k)) 7
iy ’ ’

. L 1 —H 2 H 2

Pr = S ! (ﬂ_\/(l(va;kva:,k)) + (Z( 1/ kfy k)) ) (8)

Oy = tan~"! (4(55@%0/4(55,@2&0) ©)

where Z(-) takes the phase of its argument, X and x are the
vectors consisting of the first and last (M — 1) entries of
x with length M, respectively. Any other single-tone fre-
quency estimation algorithm, e.g., [14, 15] or ML-based (pe-
riodogram) methods can also be used, for better accuracy.

We should mention that by solving (6) using any of the
existing tensor decomposition algorithms, we already have an
initial estimate of B, i.e., the path-losses. However, since
there is an intrinsic scaling ambiguity of tensor decomposi-
tion, such an initial estimate may not be useful. Neverthe-
less, this issue is easy to fix. Note that the array manifolds
AT,AI,Ay without scaling ambiguity can be constructed
from {ék, Ok, @k}szr Then, the estimate of B without scal-
ing ambiguity can be computed from the following LS prob-
lem:

R o R N N 2
B « argmin HH —(VioVio VT)BTHF. (10)

In terms of theoretical guarantees of identifiability, we
have the following theorem:

Theorem 1 The proposed approach can uniquely identify the
parameters of interest under the DD channel model with
DP arrays provided that min (M,,K) + min(M,, K) +
min(M,, K) + min (4, K) > 2K + 3.

One can easily check that {V,,V,,V, B} meet the k-
rank condition [17] provided that all the DOA, DOD and path-
loss are not the same, which is a mild condition considering
the random nature of multi-path. Thus, Theorem 1 essentially
follows from [16]. Much better results can also be claimed,
albeit in the almost surely sense — see [10].

3.2. IMDF and Identifiability

The ‘naive’ tensor-based method ignores the Vandermonde
structure of some of the array manifold vectors in its first step,
only to impose it later. This is suboptimal. Theorem 1 in
particular is a general bound that neglects the Vandermonde
structure in v, v, and v,. If we take this structure into
account, a better uniqueness condition can be obtained. To
this end, we rearrange the elements of H such that the re-
sulting tensor is with dimension M, x M, x M, x 4, i.e.,
Z k1 Vrk © vm KOV vk © by, where o denotes the outer prod-
uct and by, is the kth Column of B. The above can be viewed
as a multi-snapshot 3-D harmonic retrieval problem, where
the number of snapshots is four, and each snapshot is written
as

HED = Zﬂ”vmomovw ¥p.a. (1)

k=1
Theorem 2 The parameters {Gk, Oks Ugs By (p.a) } are all
uniquely identifiable by the IMDF based procedure provided
that

K <arg max F

F,P,,P;,Py,
st max (B = )PPy, Po(P. = 1P,
PPy(P, — 1)) > F
8Q,Q.Qy > F (12)

where P, + Q, =
M, + 1.

Mr+17Px+Qx:Mx+17Py+Qy:

This follows by invoking the identifiability result for the
IMDF algorithm for multi-dimensional harmonic retrieval
[11], which is far stronger compared to that in Theorem 1.
For example, when M, = 4, M,, = 8,and M, = 2, the iden-
tifiability of Theorem 1 is K = 7, while the identifiability of
Theorem 2 is K = 32. Furthermore, even when the MS only
has a single dual-polarized antenna, it can be shown using the
IMDF based approach that the number of identifiable paths is
upper bounded by K < 0.8187M;.

In Algorithm 1, we show the detailed procedures for esti-
mating multipath parameters using IMDF.

4. NUMERICAL RESULTS

Consider a MIMO system with an 4 x 8 DP URA at the
BS and a 2-element DP ULA at the MS. This particular
case is of considerable practical interest in 3GPP as a can-
didate for implementation [2]. In the simulation, we assume
that the multipath propagation gains are Rician distributed,
and all the multipath parameters are randomly (uniformly)
drawn. In the simulation, we assume that the multipath



Algorithm 1 IMDF for DD-DP Parameter Estimation

1: Compute the least squares (LS) estimate of H, i.e., ﬂLs,

and form ,ﬂ(p,q) via (11).
2: Use Theorem 2 to pre-calculate {P,,P,, P, Qqu, Qy,

Q:}, such that each ,ﬁ(p,q) can be reshaped into a

P,P,P. x Q,Q,Q, matrix which is denoted as H®P9),

3: Perform forward-backward smoothing on the conjugate
of H(®9) to obtain H®%), and then Vp € {(V,, H,)} and
q € {(Vy,H,)}, stack {H®9 H®PD} into a P, P, P, x
8Q.QyQ, matrix, denoted by H.

4: Perform 3-D IMDF to H and obtain the estimates of
{eka Sofﬁ ﬁk} .

5: Use {0k, P, Ik} to construct V., Vs, Vy, and then esti-
mate the path-loss matrix B via (10)

propagation gains are Rician distributed, and all the multi-
path parameters are randomly (uniformly) drawn. The BS
covers [0°,90°] elevation angular range and (—45°,45°) az-
imuth angular range, while the MS only covers [—60°, 60°]
azimuth angular range since the elevation angle is zero for
ULA, ie., 0 ~ U(-7/3,7/3), ox ~ U(0,7/2), V) ~
U(—mn/3,7/3). The non-parametric linear LS channel esti-
mate is also plotted as a performance benchmark. All the
results are averaged over 500 Monte-Carlo trials using a com-
puter with 3.2 GHz Intel Core i15-4460 and 4 GB RAM. The
normalized MSE (NMSE) of channel estimates is computed
from 5 7% | H; — H|3. /| H||% where H, denotes the es-
timate from the sth Monte-Carlo trial.

The number of multipath randomly varies from 1 to 6.
Since the channel exhibits sparse property, we include a com-
pressive sensing (CS) based technique [7] for comparison,
where each angle is quantized with 7 bits, so the resulting
dictionary is with size 4M, M; x 223, which however is in-
feasible in a conventional desktop. To make this algorithm
work in a fast fashion, after obtaining the LS channel esti-
mate, we reshape each sub-block of the channel estimate as
an M, x M, x M, tensor and average them. Then we im-
plement 3-D FFT with 128 points to estimate {6,4, ¢}, fol-
lowing the so-called peak-picking technique. Finally, we up-
date the path-loss matrix B via (10). We test the performance
of all the competitors under known and unknown number of
multipath. For the latter, we set K = 6 to all the algorithms.
Moreover, orthogonal pilots are employed.

It is observed from Fig. 1 that PARAFAC outperforms the
IMDEF, LS and CS algorithms in both cases. Compared to Fig.
1(a), PARAFAC, IMDF and CS suffer slight performance loss
in Fig. 1(b), where the exact number of multipath is unknown.
When SNR > 14 dB, we see that the NMSE of CS is even
worse than the LS method. This is mainly because as SNR
increases, the performance of CS is limited by the resolution
ability of dictionary.
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Fig. 1. NMSE of versus SNR.

5. CONCLUSION

We considered the parameter estimation problem for the DD
channel model with DP arrays — which is a setup that is of
particular interest to standard organizations and industry. We
proposed a tensor-based method to handle this challenging
problem, which guarantees identifiability of the parameters
of interest under mild and practical conditions. We also pro-
posed a reduced-complexity algorithm that is based on 3D
harmonic retrieval to handle the same problem, with slight pa-
rameter accuracy loss but much faster runtime performance.
Numerical simulations support our analysis and show that the
proposed procedures, esp. the IMDF-based one, are very ef-
fective and promising for actual implementation.
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