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ABSTRACT

We propose a multi-dimensional (M-D) sparse Fourier transform

inspired by the idea of the Fourier projection-slice theorem, called

FPS-SFT. FPS-SFT extracts samples along lines (1-dimensional

slices from an M-D data cube), which are parameterized by random

slopes and offsets. The discrete Fourier transform (DFT) along

those lines represents projections of M-D DFT of the M-D data onto

those lines. The M-D sinusoids that are contained in the signal can

be reconstructed from the DFT along lines with a low sample and

computational complexity provided that the signal is sparse in the

frequency domain and the lines are appropriately designed. The

performance of FPS-SFT is demonstrated both theoretically and nu-

merically. A sparse image reconstruction application is illustrated,

which shows the capability of the FPS-SFT in solving practical

problems.

Index Terms— Multi-dimensional signal processing, sparse

Fourier transform, Fourier projection-slice theorem, sparse image

reconstruction

1. INTRODUCTION

Conventional signal processing methods in radar, sonar, and medical

imaging systems usually involve multi-dimensional discrete Fourier

transforms (DFT), which can be implemented by the fast Fourier

transform (FFT). The sample and computational complexity of the

FFT are O(N) and O(N logN), respectively, where N is the num-

ber of samples in the multi-dimensional sample space. Recently,

the sparse Fourier transform (SFT) [1–4] has been proposed, which

leverages the sparsity of signals in the frequency domain to reduce

the sample and computational cost of the FFT. Different versions of

the SFT have been investigated for several applications including a

fast Global Positioning System (GPS) receiver, wide-band spectrum

sensing, radar signal processing, etc. [5–9].

Multi-dimensional signal processing requires multi-dimensional

SFT algorithms. The 2-dimensional (2-D) SFT algorithm proposed

in [2] achieves sample complexity O(K) and computational com-

plexity of O(K logK), which are the lower bounds of the complex-

ities of known SFT algorithms to date [4]. The reduction of com-

plexity in SFT of [2] is achieved by implementing a 2-D DFT as

a series of 1-dimensional (1-D) DFTs, which are applied on a few

columns and rows of the input data matrix. The SFT of [2] basically

extends the 1-D SFT algorithm of [1] to two dimensions; such SFT

algorithm employs the so-called OFDM-trick to decode the frequen-

cies that are embedded in the phase difference of DFTs of the same

signal but with different sample offsets. However, the SFT of [2]

only applies to the 2-D cases with equal sample length,
√
N , of the
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two dimensions;
√
N is assumed to be a power of 2. Moreover, to

achieve a high success rate of frequency recovery, it assumes that the

data is very sparse (K <<
√
N ) in the 2-D frequency domain and

the frequency locations are distributed uniformly. However, those

assumptions are not always valid in practical scenarios.

In this work, we propose FPS-SFT, a new SFT algorithm that

uses the basic idea of [2] while avoiding the shortcomings of [2],

and can be generalized to the D-dimensional (D-D), D ≥ 2 cases.

The FPS-SFT implements a D-D DFT via a sequence of 1-D DFTs,

applied on samples of the D-D data which are taken along discrete

lines; the lines are parametrized with random slopes and offsets. This

is different from [2], where the lines are restricted along the axis of

each dimension, i.e., the rows and the columns. The proposed FPS-

SFT can be viewed as a low-complexity, Fourier projection-slice ap-

proach for signals that are sparse in the frequency domain. In the

Fourier projection-slice theorem [10], the Fourier transform of a pro-

jection is a slice of the D-D Fourier transform along the same line the

projection was taken. In FPS-SFT, the 1-D DFT along a line, which

is a 1-D slice of the D-D data is the projection of the D-D DFT of

the D-D data to such line. While the classic Fourier projection-slice

based method reconstructs the frequency domain of the signal using

interpolation based on frequency-domain slices, the FPS-SFT aims

to reconstruct the signal based on DFT of time-domain slices with

reduced complexity; this is achieved by leveraging the sparsity of

the signal in the frequency domain.

The connection between SFT algorithms and the Fourier

projection-slice theorem is also found in [8, 9], where the SFT al-

gorithms also rely on lines extracted from D-D data. The recovery

of the frequency locations in those SFT algorithms are based on a

voting procedure; specifically, each entry of the DFT along a line

is the projection of the D-D DFT of the data; the projected DFT

values lie in a D − 1-dimensional hyper-plane, which is orthogonal

to the time-domain line. When the entry value of the DFT along a

line is significant, each DFT grid in the D − 1-dimensional hyper-

plane gains one vote. After applying DFT on a sufficient number of

lines with different slopes followed by the voting procedure, the DFT

grids with the largest number of votes are recovered as the signifi-

cant frequencies. When K is moderately large, such method would

generate many false frequencies due to that many zero-valued fre-

quency locations also gain large votes stemming from the ambiguity

in the voting process. Moreover, the sample and computational com-

plexity of those SFT algorithms do not achieve the lower bounds of

the state-of-the-art SFT algorithms [2, 4].

The fundamental difference between the FPS-SFT and the SFT

algorithms of [8, 9] is that the FPS-SFT is inspired by the low-

complexity SFT of [2], which essentially utilizes phase information

to recover the significant frequencies in a progressive manner, i.e.,

each iteration in the FPS-SFT recovers a subset of significant fre-

quencies, whose contributions are removed in subsequent iterations;
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this results in a sparser signal.

The advantages of the proposed FPS-SFT are summarized as

follows. FPS-SFT applies to data of arbitrary dimensions and sizes,

which are sparse in the frequency domain. In the 2-D cases, the FPS-

SFT outperforms the SFT of [2] significantly when the sparsity of the

data reduces. The limitation of the SFT of [2] on K-sparse signals

with large K and uniformly distributed frequencies essentially stems

from the fact that the direction of projection in the DFT domain is

restricted to be along rows and columns. By randomizing the direc-

tion of projection in the DFT domain, achieved by taking DFT along

lines with pseudo-random slopes, the FPS-DFT can accommodate

signals that contain less sparse, non-uniformly distributed frequen-

cies.

Notation: We use lower-case bold letters to denote vectors. [·]T de-

notes the transpose of a vector. The N -modulo operation is denoted

by [·]N . [S] refers to the integer set of {0, ..., S−1}. The cardinality

of set S is denoted as |S|. We use a ⊥ b to denote that a and b are

co-prime. The DFT of signal x is denoted by x̂.

2. THE FPS-SFT ALGORITHM

We consider the following 2-D signal model, which is a superposi-

tion of K 2-D complex sinusoids, i.e.,

x(n) ,
∑

(a,ω)∈S2

aejn
T
ω, (1)

where n , [n0, n1]
T ∈ X2 , [N0] × [N1], with N0, N1 denoting

the sample length of the two dimensions, respectively. (a,ω) repre-

sents a 2-D sinusoid whose amplitude is a with a ∈ C, a 6= 0 and

frequency is ω , [ω0, ω1]
T with ωk = 2π

Nk

mk,mk ∈ [Nk], k ∈
{0, 1}. The set S2 with |S2| = K includes all the sinusoids.

We assume that the signal is sparse in the frequency domain, i.e.,

K << N , N0N1. The problem we address is the recovery of S2

from samples of x(n). The generalization to the higher dimension,

i.e., D-D cases with D > 2 is straightforward.

2.1. The SFT algorithm of [2]

According to [2], in order to recover the frequency set S2, 1-D DFTs

are applied on a subset of columns and rows of the data. The N0-

point DFT of the ith, i ∈ [N1] column of the data equals

ĉi(m) ,
1

N0

∑

l∈[N0]

x(l, i)e
−j 2π

N0
ml

=
1

N0

∑

(a,ω)∈S2

∑

l∈[N0]

ae
j 2π
N1

m1ie
j 2π
N0

l(m0−m)
, m ∈ [N0].

For a fixed m, ĉi(m) is the summation of modulated amplitudes

of the 2-D sinusoids, (a, [2πm0/N0, 2πm1/N1]
T ) ∈ S2, whose

frequencies lie on line

m0 −m = 0, m0 ∈ [N1], (2)

which is a row in the N0 × N1-point DFT of (1), i.e.,

x̂(m0,m1), [m0,m1]
T ∈ X2. Thus, ĉi(m),m ∈ [N0], the DFT

along a column, can be viewed as the projection of x̂(m0,m1) on

that column. Similarly, the N1-point DFT applied on a row of (1) are

projections of columns of x̂(m0,m1) on that row. Since the signal

is sparse in the frequency domain, if |ĉi(m)| 6= 0, with high prob-

ability, there is only one significant frequency laying on line (2); in

such case, we call the frequency bin m to be ‘1-sparse’, and ĉi(m)

is reduced to be ĉi(m) = ĉi(m0) = ae
j 2π
N1

m1i. The amplitude, a,

can be determined by the m0-th entry of the DFT of the 0-th col-

umn, i.e., a = ĉ0(m0), and the other frequency component, m1, is

‘coded’ in the phased difference between the m0-th entries of the

DFTs of the 0-th and the 1-st columns, which can be decoded by

m1 = φ (ĉ1(m0)/ĉ0(m0))
N1
2π

, where φ(x) is the phase of x. Note

that the 1-sparsity of the mth bin can be effectively tested by com-

paring |ĉ0(m)| and |ĉ1(m)|, i.e., ĉi(m) is 1-sparse almost for sure

when |ĉ0(m)| = |ĉ1(m)|. Such frequency decoding technique is re-

ferred to as OFDM-trick [1]. The decoded frequencies are removed

from the signal, so that the following processing can be applied on a

sparser signal, which is likely to generate more 1-sparse bins in the

subsequent processing.

A frequency bin that is not 1-sparse in column processing might

be 1-sparse in row processing. Also, the removal of frequencies in

the column (row) processing may cause bins in the row (column)

processing to be 1-sparse, the SFT of [2] runs iteratively and alter-

natively between columns and rows. The algorithm stops after a

finite number of iterations.

The SFT of [2] succeeds with high probability only when the fre-

quencies are very sparse; this is due to the ‘deadlock’ structures that

exist in the distribution of frequency locations. In a deadlock case,

neither a column nor a row DFT contains a 1-sparse bin. In fact,

in many applications, the signal frequency exhibits a block sparsity

pattern [11], i.e., the significant frequencies are clustered. In those

cases, even when the signal is very sparse, deadlocks are inevitable.

2.2. FPS-SFT

The SFT of [2] reduces a 2-D DFT into 1-D DFTs of the columns

and rows of the input data matrix. The columns and the rows can be

viewed as discrete lines of the input data matrix with slopes ∞ and

0, respectively. In this section, by proposing FPS-SFT, we reduce

the 2-D DFT into 1-D DFTs of the data along discrete lines with

random slopes and offsets. The SFT of [2] resolves 2-D frequencies

that are projected to 1-sparse bins of the column and row DFTs, and

a deadlock arises when such projections cannot create any 1-sparse

bins. In FPS-SFT, by employing lines with random slopes, the direc-

tions of projection are also random, which offers a high probability

of creating more 1-sparse bins and resolving the deadlocks encoun-

tered by SFT of [2]. This can be illustrated in Fig. 1, where the 4
2-D frequencies in the 8× 8-point DFT domain form a deadlock, as

neither a row DFT nor a column DFT creates a 1-sparse bin. How-

ever, the DFT along the diagonal, corresponding to the projection of

the 2-D DFT of data onto the diagonal, produces 4 1-sparse bins,

which solves the deadlock.

FPS-SFT is an iterative algorithm; each iteration returns a sub-

set of recovered 2-D frequencies. After T iterations, the FPS-SFT

returns a frequency set, Ŝ2, which is an estimate of S2 (see (1)). The

frequencies recovered in previous iterations are passed to the next it-

eration, and their contributions are removed from the signal in order

to create a sparser signal.

Within each iteration of FPS-SFT, the signal of (1) is sampled

along a line with slope α1/α0 starting at point (τ0, τ1), with α,τ ∈
X2, where α , [α0, α1]

T , τ , [τ0, τ1]
T . The sampled signal can

be expressed as

s(α,τ , l) , x([α0l + τ0]N0 , [α1l + τ1]N1)

=
∑

(a,ω)∈S2

ae
j2π

(

m0[α0l+τ0]N0
N0

+
m1[α1l+τ1]N1

N1

)

, l ∈ [L].
(3)
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Fig. 1. Demonstration of 2-D frequencies projecting onto 1-D. The

projection onto a column or a row causes collisions, while the pro-

jection onto the diagonal creates 1-sparse bins. The colored blocks

mark significant frequencies.

Note that such line can wrap around within x(n0, n1), and the sam-

pling points along the line are always on the grid of x(n0, n1) due

to the choice of α, τ .

On taking an L-point DFT on (3), we get

ŝ(α,τ , m) ,
1

L

∑

l∈[L]

s(α,τ , l)e−j2π lm

L

=
1

L

∑

(a,ω)∈S2

ae
j2π

(

m0τ0
N0

+
m1τ1
N1

)

∑

l∈[L]

e
j2πl

(

m0α0
N0

+
m1α1
N1

−
m

L

)

,

(4)

where m ∈ [L].
Let us assume that the line parameters are designed such that the

orthogonality condition for frequency projection are satisfied (see

Lemma 1 for details), i.e., for m ∈ [L], [m0,m1]
T ∈ X2,

f̂(m) ,
1

L

∑

l∈[L]

e
j2πl

(

m0α0
N0

+
m1α1
N1

−
m

L

)

∈ {0, 1}, (5)

then if
[

m0α0

N0
+

m1α1

N1
− m

L

]

1

= 0, [m0,m1]
T ∈ X2, (6)

the mth entry of (4) can be simplified as

ŝ(α, τ ,m) =
∑

(a,ω)∈S2

ae
j2π

(

m0τ0
N0

+
m1τ1
N1

)

. (7)

Eqs. (7) and (6) state that each entry of the L-point DFT of the

data located along a line with slope α1/α0 represents a projection

of the 2-D DFT values locating along the line of (6), which is or-

thogonal to the time domain line (3). This is closely related to the

Fourier projection-slice theorem [10]. The Fourier projection-slice

theorem states that the Fourier transform of a projection is a slice

of the Fourier transform of the projected object. While the classical

projection is in the time domain and the corresponding slice is in the

frequency domain, in the FPS-SFT case, the projection is in the DFT

domain and the corresponding slice is in the sample (discrete-time)

domain. The important difference between the Fourier projection-

slice theorem and FPS-SFT is that while the former reconstructs the

frequency domain of the signal via interpolation frequency domain

slices, which exhibits high complexity, the latter efficiently recovers

the significant frequencies of the signal directly based on the DFT

of time-domain 1-D slices, i.e., samples along random lines. This

is achieved by exploring the sparsity nature of the signal in the fre-

quency domain, which is explained in the following.

We apply the assumption that the signal is sparse in the fre-

quency domain; specifically, we assume that |S2| = O(L). Then, if

|ŝ(α,τ , m)| 6= 0, with high probability, the mth bin is 1-sparse, and

it holds that ŝ(α, τ ,m) = ae
j2π

(

m0τ0
N0

+
m1τ1
N1

)

, (a,ω) ∈ S2. In

such case, the 2-D sinusoid, (a,ω), can be ‘decoded’ by three lines

of the same slope but different offsets. The offsets for the three lines

are designed as τ , τ0 , [[τ0 + 1]N0 , τ1]
T , τ1 , [τ0, [τ1 + 1]N1 ]

T ,

respectively; such design allows for the frequencies to be decoded

independently in each dimension. The sinusoid corresponding to the

1-sparse bin, m, can be decoded as

m0 =

[

N0

2π
φ

(

ŝ(α, τ0, m)

ŝ(α, τ ,m)

)]

N0

,

m1 =

[

N1

2π
φ

(

ŝ(α, τ1, m)

ŝ(α, τ ,m)

)]

N1

,

a = ŝ(α, τ ,m)e−j2π(m0τ0/N0+m1τ1/N1).

(8)

To recover all the sinusoids in S2 efficiently, each iteration of FPS-

SFT adopts a random choice of line slope (see Lemma 2) and offset.

Furthermore, the contribution of the recovered sinusoids in the pre-

vious iterations is removed via a construction-subtraction approach

to creating a sparser signal in the future iterations. Specifically, as-

suming that for current iteration, the line slope and offset parameters

are selected as α, τ , respectively, the recovered sinusoids are pro-

jected into L frequency bins to construct the DFT along the line,

ŝr(α, τ ,m) ,
∑

(a,ω)∈Im
ae

j2π
(

m0τ0
N0

+
m1τ1
N1

)

, m ∈ [L], where

Im, m ∈ [L] represent the subsets of the recovered sinusoids that are

related to the constructed DFT along line via projection, i.e., Im ,

{(a,ω) : [m0α0
N0

+ m1α1
N1

− m
L
]1 = 0, [m0,m1]

T ∈ X2},m ∈ [L].
Next, the L-point inverse DFT (IDFT) is applied on

ŝr(α, τ ,m),m ∈ [L], from which the line, sr(α,τ , l), l ∈ [L] due

to the previously recovered sinusoids are constructed. Subsequently,

those constructed line samples are subtracted from the signal sam-

ples of the current iteration. Since the contribution of the recovered

sinusoids is removed, the signal appears sparser and thus the recov-

ery of the remaining sinusoids is easier in the future iterations.

2.3. Analysis of FPS-SFT

In this section we provide some lemmas on the design of the lines

used in FPS-SFT. Lemma 1 shows the design of the line length to

guarantee orthogonality of projection. Lemma 2 provides candidates

of line slopes such that, each bin of the DFT along the line corre-

sponds to the same number of frequencies projected to such bin. The

uniformity of the projection is likely to create more 1-sparse bins in

the DFT of the lines. The proofs of the lemmas can be found in the

Appendices.

Lemma 1. (Line Length): Let L be the least common multiple

(LCM) of N0, N1, and s(α, τ , l) = x([α0l + τ0]N0 , [α1l + τ1]N1)

with l ∈ [L],α , [α0, α1]
T , τ , [τ0, τ1]

T ∈ X2 be a discrete line

extracted from the signal model of (1). Then each entry of the L-

point DFT of s(α,τ , l), i.e., ŝ(α,τ , m),m ∈ [L] is the orthogonal

projection of DFT values of the N0 × N1-point DFT of (1), whose

frequencies locate on the discrete line of [m0
N0

α0 +
m1
N1

α1 − m
L
]1 =

0, [m0,m1]
T ∈ X2. Moreover, L is the minimum length of a line to

allow orthogonal projection of DFT values of any frequency location

[m0,m1]
T ∈ X2 with arbitrary choice of α ∈ X2.



Lemma 2. (Line Slope): Let s(α, τ , l) = x([α0l + τ0]N0 , [α1l +

τ1]N1) with l ∈ [L], L = LCM(N0, N1),α , [α0, α1]
T ∈ A ⊂

X2, τ , [τ0, τ1]
T ∈ X2 be a discrete line extracted from the signal

model of (1), where A , {α : α ∈ X2, α0 ⊥ α1, α0 ⊥ c1, α1 ⊥
c0} with c0 = L/N0, c1 = L/N1. Let ŝ(α, τ ,m),m ∈ [L]
be the L-point DFT of s(α, τ , l), l ∈ [L]. Then each entry of

ŝ(α, τ ,m),m ∈ [L] is the projection of DFT values located at N/L

different frequency locations in X2, i.e., |Pm| = N/L, where Pm ,

{[m0,m1]
T : [m0

N0
α0 + m1

N1
α1 − m

L
]1 = 0, [m0,m1]

T ∈ X2}.

Moreover, Pm ∩ Pm′ = ∅ for m 6= m′,m,m′ ∈ [L]. Thus, the

DFT values of N frequency locations in X2 are uniformly projected

into the L frequency bins of ŝ(α,τ , m),m ∈ [L].

Complexity analysis: The FPS-SFT executes T iterations; in the

2-D case, the samples used in each iteration is 3L since 3 L-length

lines, with L = LCM(N0, N1) are extracted in order to decode

the two frequency components of a 2-D sinusoid (see (8)). Hence,

the sample complexity of FPS-SFT is O(3TL) = O(L). The

core processing of FPS-SFT is the L-point 1-D DFT, which can

be implemented by the FFT with the computational complexity of

O(L logL). The L-point IDFT in the construction-subtraction pro-

cedure can also be implemented by the FFT. In addition to the FFT,

each iteration needs to evaluate O(K) frequencies. Hence the com-

putational complexity of FPS-SFT is O(L logL + K). Assuming

that K = O(L), then the sample and computational complexity

can be simplified as O(K) and O(K logK), respectively, which

achieves the lower bounds of the complexity of known state-of-the-

art SFT algorithms [2, 4].

Multi-dimensional extension: For the D-D case with the data

cube size of N0 × N1 × · · ·ND−1, the line length can be set

as L = LCM(N0, · · · , ND−1); the slope and offset parameters

[α0, · · · , αD−1]
T , [τ0, · · · , τD−1]

T is randomly taken from XD ,

[N0]× [N1]× · · · [ND−1]. Each iteration extracts D + 1 L-length

lines with a same random slope but different offsets from the D-D

data cube. The 0-th line offset is set to be [τ0, · · · , τD−1]
T , while

for the ith line with 1 ≤ i ≤ D− 1, the offset for the ith dimension

is set to be [τi + 1]Ni
. With such offset parameters, the frequencies

can be decoded independently for each dimension.

3. NUMERICAL RESULTS

Comparison to the SFT of [2]: The length of the two dimensions

are set to N0 = N1 = 256. We simulate two scenarios, when

frequencies are uniformly distributed and when they are clustered.

For the clustered case, we consider clusters of 9 and 25 frequencies.

When N0 = N1, the line length, L, of FPS-SFT equals N0, and each

iteration of FPS-SFT uses 3N0 samples. We limit the maximum iter-

ations to Tmax = N/(3L) ≈ 85; this corresponds to roughly 100%
samples of the input data. Fig. 2 (a) shows the probability of perfect

recovery versus level of sparsity for FPS-SFT and the SFT of [2], re-

spectively. When the signal is very sparse, e.g., K = N0/2, the SFT

of [2] has a high probability for perfect recovery, however, it fails

when the sparsity is moderately large, e.g., K = 2N0. Moreover,

the SFT of [2] only works for the scenario in which frequencies are

distributed uniformly, while it fails when there exists even a single

frequency cluster. On the contrary, the FPS-SFT applies to signals

with a wide range of sparsity levels. For instance, the success rate

of FPS-SFT is approximate 96% when K = 5N0 and the frequency

locations are uniformly distributed, while similar performance is ob-

served for the clustered cases considered. In all cases, the success

rates drop to 0 when K = 6N0, since we set Tmax = 85. To

perfectly reconstruct all frequencies, the FPS-SFT needs to run for

roughly 100 iterations when K = 6N0. Fig. 2 (b) shows the per-

centage of samples used by the FPS-SFT for perfect recovery ver-

sus different sparsity level for the uniform and clustered cases. The

figure shows that the sparser the signal, the fewer samples are re-

quired by the FPS-SFT to recover all the frequencies. For example,

when K = N0, only 5.9% of the signal samples are required in the

uniform-distributed frequency case or the clustered case. The good

performance of FPS-SFT arises because the randomized projections

can effectively isolate the frequencies into 1-sparse bins, even when

the signal is less sparse (K is large) and the frequencies are clus-

tered.
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Fig. 2. Frequency recovery performance versus sparsity. The re-

sults are generated by 100 iterations of Monte Carlo simulations. (a)

Probability of perfect recovery versus number of significant frequen-

cies, K. (b) Percentage of samples needed versus K.

Sparse image reconstruction: Due to the duality of the time and

frequency, the FPS-SFT is able to reconstruct a signal that is sparse

in the time (spatial) domain using the samples in the frequency do-

main. Here we demonstrate the ability of FPS-SFT to recover im-

ages that are sparse in the pixel domain. Such sparse image recovery

problem arises in the MRI applications [12]. In MRI, samples are di-

rectly taken from the frequency domain, from which the images re-

flecting the inner structure of the examined objects are reconstructed.

Fig. 3 (a) shows a 512×576-pixel brain MRI image [12]. This image

was sparsified by applying thresholding on the original image. Next,

we converted the sparsified images into the frequency domain via a

512 × 576-point DFT, on which the 2-D FPS-SFT was applied to

reconstruct the images. Figs. 3 (b), (c) and (d) show that the images

with 2.85%, 4.48% and 6.61% of non-zero pixels can be perfectly

reconstructed by FPS-SFT using 14.0%, 23.4%, and 70.3% samples

in the frequency domain, respectively.

(a) (b) (c) (d)

Fig. 3. Image reconstruction. (a) Raw image. (b) 2.9%-sparse, K =
8411. (c) 4.5%-sparse, K = 13219. (d) 6.6%-sparse, K = 19506.

4. CONCLUSION

We have proposed the FPS-SFT, a low-complexity, multi-

dimensional SFT algorithm based on the idea of the Fourier



projection-slice theorem. Theoretical and numerical results of FPS-

SFT have been provided and an application of FPS-SFT on sparse

image reconstruction has been demonstrated.

5. REFERENCES

[1] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price,

“Nearly optimal sparse Fourier transform,” in Proceedings of

the forty-fourth annual ACM symposium on Theory of comput-

ing. ACM, 2012, pp. 563–578.

[2] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi,

Erik Price, and Lixin Shi, “Sample-optimal average-case

sparse Fourier transform in two dimensions,” in Communi-

cation, Control, and Computing (Allerton), 2013 51st Annual

Allerton Conference on. IEEE, 2013, pp. 1258–1265.

[3] Daniel Potts and Toni Volkmer, “Sparse high-dimensional FFT

based on rank-1 lattice sampling,” Applied and Computational

Harmonic Analysis, 2015.

[4] S. Pawar and K. Ramchandran, “FFAST: An algorithm for

computing an exactly k-sparse DFT in O(klogk) time,” IEEE

Transactions on Information Theory, vol. PP, no. 99, pp. 1–1,

2017.

[5] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk,

“Faster GPS via the sparse Fourier transform,” in Proceedings

of the 18th annual international conference on Mobile comput-

ing and networking. ACM, 2012, pp. 353–364.

[6] Haitham Hassanieh, Lixin Shi, Omid Abari, Ezz Hamed, and

Dina Katabi, “GHz-wide sensing and decoding using the

sparse Fourier transform,” in INFOCOM, 2014 Proceedings

IEEE. IEEE, 2014, pp. 2256–2264.

[7] Shaogang Wang, Vishal M Patel, and Athina Petropulu, “A ro-

bust sparse fourier transform and its application in radar signal

processing,” IEEE Transactions on Aerospace and Electronic

Systems, 2017.

[8] Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and

Fredo Durand, “Light field reconstruction using sparsity in the

continuous Fourier domain,” ACM Transactions on Graphics

(TOG), vol. 34, no. 1, pp. 12, 2014.

[9] Haitham Hassanieh, Maxim Mayzel, Lixin Shi, Dina Katabi,

and Vladislav Yu Orekhov, “Fast multi-dimensional NMR ac-

quisition and processing using the sparse FFT,” Journal of

Biomolecular NMR, pp. 1–11, 2015.

[10] Russell M Mersereau and Alan V Oppenheim, “Digital recon-

struction of multidimensional signals from their projections,”

Proceedings of the IEEE, vol. 62, no. 10, pp. 1319–1338, 1974.

[11] Yonina C Eldar, Patrick Kuppinger, and Helmut Bolcskei,

“Block-sparse signals: Uncertainty relations and efficient re-

covery,” IEEE Transactions on Signal Processing, vol. 58, no.

6, pp. 3042–3054, 2010.

[12] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Com-

pressed sensing MRI,” IEEE Signal Processing Magazine, vol.

25, no. 2, pp. 72–82, March 2008.

[13] Kenneth H Rosen, Elementary number theory and its applica-

tions, Addison-Wesley, 1993.

Appendices
A. COLLECTIONS OF PROOFS OF LEMMAS

A.1. Proof of Lemma 1

Proof. The orthogonality condition derived in (5) for

[m0,m1]
T , [α0, α1]

T ∈ X2,m ∈ [L] is equivalent to

[

m0α0

N0
+

m1α1

N1
− m

L

]

1

= 0, (9)

which can be rewritten as
[

L

N0
m0α0 +

L

N1
m1α1

]

L

= m. (10)

It is clear that L = LCM(N0, N1) satisfies the above orthogonality

condition, since L/N0, L/N1 are integers.

Next, we use contradiction to prove that L = LCM(N0, N1) is

the smallest line length that allows the orthogonal projection for any

[m0,m1]
T , [α0, α1]

T ∈ X2.

Assume that L < LCM(N0, N1), then, the consequence is that

at least either L/N0 or L/N1 is not an integer. Without loss of gen-

erality, we assume that L
N0

/∈ Z, then the right side of (10) equals

to [L/N0]L /∈ [L] for m0 = 1, α0 = 1, m1 = 0, which is con-

tradictory to the premise that the orthogonality condition holds for

any [m0,m1]
T , [α0, α1]

T ∈ X2. Hence L = LCM(N0, N1) is the

smallest line length which allows the orthogonal projection of any

frequency to a line with arbitrary slope.

A.2. Proof of Lemma 2

Proof. This proof is organized as follows. First, by exploring the

Bézout’s lemma [13], we prove that with the specified line parame-

ters, i.e., L = LCM(N0, N1), [α0, α1]
T ∈ A, [τ0, τ1]

T ∈ X2, each

entry of the DFT along a line, i.e., ŝ(α, τ ,m),m ∈ [L] contains

at least the projection of the DFT value from one frequency loca-

tion (m′
0,m

′
1) in X2, i.e., |Pm| > 0, m ∈ [L]. Next, we prove

that |Pm| ≥ N/L, followed by the proof of Pm ∩ Pm′ = ∅ for

m 6= m′,m,m′ ∈ [L], and finally, we conclude that |Pm| = N/L.

Let α′
0 = α0c0, α

′
1 = α1c1. Since α0 ⊥ α1, α0 ⊥ c1, α1 ⊥

c0, and c0 ⊥ c1 due to L = LCM(N0, N1), it is obvious that α′
0 ⊥

α′
1. According to the Bézout’s lemma, there exist m0,m1 ∈ Z, such

that

α′

0m0 + α′

1m1 = 1. (11)

By multiplying m ∈ [L] to the two sides of (11), we get

α′

0mm0 + α′

1mm1 = m, (12)

which, using the Euclidean division, can be written as

α′

0(m
′

0 + k0N0) + α′

1(m
′

1 + k1N1) = m, (13)

where m′
0 = [mm0]N0 ,m

′
1 = [mm1]N1 ; k0, k1 ∈ Z.

Since that

[α′

0k0N0 + α′

1k1N1]L = [L(α0k0 + α1k1)]L = 0, (14)

on taking modulo-L of the two sides of Eq. (13), we have

[α′

0m
′

0 + α′

1m
′

1]L = m, (15)

which is equivalent to (9). It means that there exists a frequency

location [m′
0,m

′
1]

T ∈ X2, whose DFT value projects to ŝ(α, τ ,m),
i.e., |Pm| > 0,m ∈ [L].



Next, let’s explore the solution structure of (15). It is easy to

see that the frequency locations, [m′
0 + kα′

1, m
′
1 − kα′

0]
T , k ∈ Z,

satisfies (15), i.e.,

[α′

0(m
′

0 + kα′

1) + α′

1(m
′

1 − kα′

0)]L = m, (16)

which can be written as

[α′

0([m
′

0+kα′

1]N0 +k0N0)+α′

1([m
′

1−kα′

0]N1 +k1N1)]L = m,
(17)

where k0, k1 ∈ Z. Again, by substituting (14), we have

[α′

0[m
′

0 + kα′

1]N0 + α′

1[m
′

1 − kα′

0]N1 ]L = m. (18)

Hence, the DFT value at frequency locations

[[m′
0 + kα′

1]N0 , [m
′
1 − kα′

0]N1 ]
T ∈ Pm ⊆ X2, also projects

to ŝ(α, τ ,m).
Next, we prove that |Pm| ≥ N/L. Assume

that for k 6= k′, there exits two duplicated frequency

locations, i.e., [[m′
0 + kα′

1]N0 , [m
′
1 − kα′

0]N1 ]
T

=

[[m′
0 + k′α′

1]N0 , [m
′
1 − k′α′

0]N1 ]
T

. It follows that

[kα′

1]N0 = [k′α′

1]N0 , [kα
′

0]N1 = [k′α′

0]N1 , (19)

which can be rewritten as

kα′

1 = k′α′

1 + k0N0, kα
′

0 = k′α′

0 + k1N1, (20)

where k0, k1 ∈ Z. It is easy to conclude that k1/k0 = α0/α1.

Hence we have

kα′

1 = k′α′

1 + iα1N0, kα
′

0 = k′α′

0 + iα0N1, (21)

where i ∈ Z, i 6= 0. Hence

k − k′ = iN0/c1 = iN/L, (22)

which means that the frequency location,

[[m′
0 + kα′

1]N0 , [m
′
1 − kα′

0]N1 ]
T

, repeats every N/L points.

In another words, there exist at least N/L frequency locations

whose DFT values projecting to ŝ(α, τ ,m), i.e., |Pm| ≥ N/L.

Next, we prove that Pm ∩ Pm′ = ∅ for m 6= m′, m,m′ ∈ [L].
Assume that [m0,m1]

T ∈ Pm ∩ Pm′ , it can be seen that

[α′

0m0 + α′

1m1]L = m = m′, (23)

which is contradict with m 6= m′. Hence Pm ∩ Pm′ = ∅.

Finally, by combing Pm ∩ Pm′ = ∅, m ∈ [L], |Pm| ≥ N/L
and |X2| = N , we can conclude that |Pm| = N/L. This completes

the proof.


	1  Introduction
	2  The FPS-SFT Algorithm
	2.1  The SFT algorithm of ghazi2013sample
	2.2  FPS-SFT
	2.3  Analysis of FPS-SFT

	3  Numerical Results
	4  Conclusion
	5  References
	Appendices
	A  Collections of Proofs of Lemmas
	A.1  Proof of Lemma ??
	A.2  Proof of Lemma ??


