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ABSTRACT

A large-scale video quality dataset called the VideoSet has been
constructed recently to measure human subjective experience of
H.264 coded video in terms of the just-noticeable-difference (JND).
It measures the first three JND points of 5-second video of resolution
1080p, 720p, 540p and 360p. Based on the VideoSet, we propose
a method to predict the satisfied-user-ratio (SUR) curves using a
machine learning framework. First, we partition a video clip into
local spatial-temporal segments and evaluate the quality of each seg-
ment using the VMAF quality index. Then, we aggregate these local
VMAF measures to derive a global one. Finally, the masking effect
is incorporated and the support vector regression (SVR) is used to
predict the SUR curves, from which the JND points can be derived.
Experimental results are given to demonstrate the performance of
the proposed SUR prediction method.

Index Terms— Video Quality Assessment, Satisfied User Ra-
tio, Just Noticeable Difference

1. INTRODUCTION

A large amount of bandwidth of fixed and mobile networks is con-
sumed by real-time video streaming. It is desired to lower the band-
width requirement by taking human visual perception into account.
Although the peak signal-to-noise ratio (PSNR) has been used as an
objective measure in video coding standards for years, it is generally
agreed that it is a poor visual quality metric that does not correlate
with human visual experience well [1].

There has been a large amount of efforts in developing new vi-
sual quality indices to address this problem, including SSIM [2],
FSIM [3], DLM [4], etc. Humans are asked to evaluate the quality
of visual contents by a set of discrete or continuous values called
opinion score; typical opinion scores in the range 1-5, with 5 be-
ing the best and 1 the worst quality. These indices offer, by def-
inition, users’ subjective test results and thus correlate better than
PSNR with their mean (called mean opinion score, or MOS). How-
ever, there is one shortcoming with these indices. That is, the differ-
ence of selected contents for ranking is sufficiently large for a great
majority of subjects. Since the difference is higher than the just-
noticeable-difference (JND) threshold for most people, disparities
between visual content pairs are easier to tell.

Humans cannot perceive small pixel variation in coded im-
age/video until the difference reaches a certain level. There is a
recent trend to measure the JND threshold directly for each indi-
vidual subject. The idea was first proposed in [5]. An assessor is
asked to compare a pair of coded image/video contents and deter-
mine whether they are the same or not in the subjective test, and a
bisection search is adopted to reduce the number of comparisons.
Two small-scale JND-based image/video quality datasets were built
by the Media Communications Lab at the University of Southern

California. They are the MCL-JCI dataset [6] and the MCL-JCV
dataset [7]. They target at the JND measurement of JPEG coded
images and H.264/AVC coded video, respectively.

The number of JPEG coded images reported in [6] is 50 while
the number of subjects is 30. The distribution of multiple JND points
were modeled by a Gaussian Mixture Model (GMM) in [8], where
the number of mixtures was determined by the Bayesian Informa-
tion Criterion (BIC). The MCL-JCV dataset in [7] consists of 30
video clips of wide content variety and each of them were evalu-
ated by 50 subjects. Differences between consecutive JND points
were analyzed with outlier removal. It was also shown in [7] that
the distribution of the first JND samples of multiple subjects can be
well approximated by the normal distribution. The JND measure
was further applied to the HEVC coded clips and, more importantly,
a JND prediction method was proposed in [9]. The masking effect
was considered, related features were derived from source video, and
a spatial-temporal sensitive map (STSM) was defined to capture the
unique characteristics of the source content. The JND prediction
problem was treated as a regression problem.

More recently, a large-scale JND-based video quality dataset,
called the VideoSet, was built and reported in [10]. The VideoSet
consists of 220 5-second sequences, each at four resolutions (i.e.,
1920 × 1080, 1280 × 720, 960 × 540 and 640 × 360). Each of
these 880 video clips was encoded by the x264 encoder implementa-
tion [11] of the H.264/AVC standard with QP = 1, · · · , 51 and the
first three JND points were evaluated by 30+ subjects. The VideoSet
dataset is available to the public in the IEEE DataPort [10]. It in-
cludes all source/coded video clips and measured JND data.

In this work, we focus on the prediction of the satisfied user ratio
(SUR) curves for the VideoSet and derive the JND points from the
predicted curves. This is different from the approach in [9], which at-
tempted to predict the JND point directly. Here, we adopt a machine
learning framework for the SUR curve prediction. First, we partition
a video clip into local spatial-temporal segments and evaluate the
quality of each segment using the VMAF [12] quality index. Then,
we aggregate these local VMAF measures to derive a global one.
Finally, the masking effect is incorporated and the support vector re-
gression (SVR) is used to predict the SUR curves, from which the
JND points can be derived. Experimental results are given to demon-
strate the performance of the proposed SUR prediction method.

The rest of this paper is organized as follows. The SUR curve
prediction problem is defined in Sec. 2. The SUR prediction method
is detailed in Sec. 3. Experimental results are provided in Sec. 4.
Finally, concluding remarks and future research direction are given
in Sec. 5.

2. JND AND SUR FOR CODED VIDEO

Given a set of clips di, i = 0, 1, 2, · · · , 51, coded from the same
source video r, where i is the quantization parameter (QP) index
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Fig. 1: Representative frames from source sequences (a) #37 and (b) #89.

used in the H.264/AVC. Typically, clip di has a higher PSNR value
than clip dj , if i < j, and d0 is the losslessly coded copy of r. The
first JND location is the transitional index i that lies on the bound-
ary of perceptually lossless and lossy visual experience for a subject.
The first JND is a random variable rather than a fixed quantity since
it varies with several factors, including the visual content under eval-
uation, the test subject and the test environment. Based on the study
in [10], the JND position can be approximated by a Gaussian distri-
bution in form of

X ∼ N (x̄, s2), (1)

where x̄ and s are the sample mean and sample standard deviation,
respectively.

We say that a viewer is satisfied if the compressed video appears
to be perceptually the same as the reference. Mathematically, the
satisfied user ratio (SUR) of vide clip di can be expressed as

Si = 1− 1

M

M∑
m=1

1m(di), (2)

where M is the total number of subjects and 1m(di) = 1 or 0 if the
mth subject can or cannot see the difference between compressed
clip di and its reference, respectively. The summation term in right-
hand-side of Eq. (2) is the empirical cumulative distribution function
(CDF) of random variable X as given in Eq. (1). Then, by plugging
Eq. (1) into Eq. (2), we can obtain a compact formula for the SUR
curve as

Si = Q(di|x̄, s2), (3)

where Q(·) is the Q-function of the normal distribution.

3. PROPOSED SUR PREDICTION SYSTEM

The SUR curve is primarily determined by two factors: 1) quality
degradation due to compression and 2) the masking effect. To shed
light on the impact of the masking effect, we use sequences #37
(DinnerTable) and #89 (TodderFountain) as examples. Their repre-
sentative frames are shown in Figs. 1 (a) and (b) and their JND data
distributions are given in Figs. 2 (a) and (b), respectively. Sequence
#37 is a scene captured around a dining table. It focuses on a male
speaker with still dark background. His face is the visual salient re-
gion that attracts people’s attention. The masking effect is weak and,
as a result, the JND point arrives earlier (i.e. a smaller i value in di).
On the other hand, sequence #89 is a scene about a toddler playing in

a fountain. The masking effect is strong due to water drops in back-
ground and fast object movement. As a result, compression artifacts
are difficult to perceive and the JND point arrives later.

The block diagram of the proposed SUR prediction system is
given in Fig. 3. When a subject evaluates a pair of video clips,
different spatial-temporal segments of the two video clips are suc-
cessively assessed. The segment dimensions are spatially and tem-
porally bounded. The spatial dimension is determined by the area
where the sequence is projected on the fovea. The temporal di-
mension is limited by the fixation duration or the smooth pursuit
duration, where the noticeable difference is more likely to happen
than the process of saccades [13, 14]. Thus, the proposed SUR pre-
diction system first evaluates the quality of local Spatial-Temporal
Segments. Then, similarity indices in these local segments are ag-
gregated to give a compact global index. Then, significant segments
are selected based on the slope of quality scores between neighbor-
ing coded clips. After that, we incorporate the masking effect that
reflects the unique characteristics of each video clip. Finally, we
use the support vector regression (SVR) to minimize the L2 distance
of the SUR curves, and derive the JND point accordingly. Several
major modules of the system will be detailed below.
Step 1. Spatial-Temporal Segment Creation

The purpose of this module is to divide a video clip into mul-
tiple spatial-temporal segments and evaluate their quality at the eye
fixation level. The dimension of a spatial-temporal segment is W ×
H × T . In case of eye pursuit, the spatial dimension should be large
enough while the temporal dimension should be short enough to en-
sure that the moving object is still covered in one segment. In case
of eye fixation, the spatial dimension should not be too large and the
temporal dimension should not be too long to represent quality well
at the fixation level. Based on the study in [15, 14], we setW = 320,
H = 180 and T = 0.5s here. The neighboring segments overlap
50% in the spatial dimension. For example, the original dimension
of 720p video is 1280× 720× 5s, and there are 7× 7× 10 = 490
segments created from each clip.
Step 2. Local Quality Assessment

We choose the Video Multimethod Assessment Fusion (VMAF)
[12] as the primary quality index to assess quality degradation of
compressed segments. VMAF is an open-source full-reference
perceptual video quality index that aims to capture the perceptual
quality of compressed video. It first estimates the quality score of
a video clip with multiple high-performance image quality indices
on a frame-by-frame basis. Then, these image quality scores are
fused together using the support vector machine (SVM) at each
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Fig. 2: SUR modeling from JND samples. The JND histogram (in blue), the smoothed PDF curve (in orange) and the SUR curve (in green)
for sequences (a) #37 and (b) #89.

Fig. 3: The block diagram of the proposed SUR prediction system.

frame. Results on various video quality databases show that VMAF
outperforms other video quality indices such as PSNR, SSIM [2],
Multiscale Fast-SSIM [16], and PSNR-HVS [17] in terms of the
Spearman Rank Correlation Coefficient (SRCC), Pearson Corre-
lation Coefficient (PCC), and the root-mean-square error (RMSE)
criteria. VMAF achieves comparable or outperforms the state-of-
the-art video index, the VQM-VFD index [15], on several publicly
available databases. For more details about VMAF, we refer inter-
ested readers to [12].
Step 3. Significant Segments Selection

VMAF is typically applied to all spatial-temporal segments.
However, not all segments contribute equally to the final quality of
the entire clip. To select significant segments that are more relevant
to our objective, we examine the local quality degradation slope,

which is defined as

δV (Sdi
wht) =

V (S
di−k

wht )− V (Sdi
wht)

k
, (4)

where V (Sdi
wht) is the VMAF score of segment Sdi

wht that is cropped
from compressed clip di with spatial indices (w, h) and temporal
index t, respectively. The slope in Eq. (4) evaluates how much the
VMAF score of the current segment Sdi

wht differs from that in its
neighboring compressed clip Sdi−k

wht , where k = 2 is the QP differ-
ence between them. If the slope is small, the local quality does not
change too much and the probability of the associated coding index
i to be a JND point is lower. We order all spatial-temporal segments
based on their slopes and select p percents of them with larger slope
values. We set p = 80% in our experiment. The goal is to filter out
less important segments before we extract a representative feature
vector.
Step 4. Quality Degradation Features

A cumulative quality degradation curve is computed for every
coded clip based on the change of VMAF scores in significant seg-
ments. Its computation consists of two steps. First, we compute
the difference of VMAF scores between a significant segment from
compressed clip di and its reference r as

∆V (Sdi
wht) = V (Sr

wht)− V (Sdi
wht). (5)

The values ∆V (Sdi
wht) collected from all significant segments can

be viewed as samples of a random variable denoted by ∆V (Sdi).
Then, based on the distribution of ∆V (Sdi), we can compute the
cumulative quality degradation curve as

F di(n) = Prob[∆V (Sdi) ≤ 2n], for n = 1, · · · , 20, (6)

which captures the cumulative histogram of VMAF score differences
for coded video di. As shown in Eq. (6), the cumulative quality
degradation curve is represented in form of a 20-D feature vector.
Step 5. Masking Features

As mentioned earlier, quality degradation in a spatial-temporal
segment is more difficult to observe if there exists a masking effect
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Fig. 4: JND prediction result: (a) the histogram of ∆ SUR and (b) the predicted VS. the ground truth JND location.

in the segment. Here, we use the spatial randomness and tempo-
ral randomness proposed in [18, 19] to measure the masking effect.
The process is sketched below. First, high frequency components
of distortions are first removed by applying a low-pass filter, which
is inspired by the Contrast Sensitivity Function (CSF), in the pre-
processing step. Then, we use the spatial randomness (SR) model
[18] and the temporal randomness (TR) [19] to compute the spatial
and temporal regularity in a spatial-temporal segment that is gener-
ated in Step 1. The spatial randomness is small in smooth or highly
structured regions. Similarly, the temporal randomness is small if
there is little motion between adjacent frames. When the SR and
TR values are higher, the spatial and temporal masking effects are
stronger. The masking features,Ms, are extracted from the reference
clip only. The histograms of the SR and the TR are concatenated to
yield the final masking feature vector:

Md0 = [Hist10(SR), Hist10(TR)]. (7)

Step 6. Prediction of SUR Curves and JND Points
The final feature vector is the concatenation of two feature vec-

tors. The first one is the quality degradation feature vector of dimen-
sion 20 as given in Eq. (6). The second one is the masking feature
vector of dimension 20 as given in Eq. (7). Thus, the dimension
of the final concatenated feature vector is 40. The SUR prediction
problem is treated as a regression problem, and solved by the Sup-
port Vector Regressor (SVR) [20]. Specifically, we adopt the ε-SVR
with the radial basis function kernel.

4. EXPERIMENTAL RESULTS

In this section, we present the prediction results of the proposed SUR
prediction framework. The VideoSet consists of 220 videos in 4
resolutions and three JND points per resolution per video clip. Here,
we focus on the SUR prediction of the first JND and conduct this
task for each video resolution independently. For each resolution,
we trained and tested 220 video clips using the 5-fold validation.
That is, we choose 80% (i.e. 176 video clips) as the training set and
the remaining 20% (i.e., 44 video clips) as the testing set. We rotated
the 20% testing set five times so that each video clip was tested once.
Since the JND location is chosen to be the QP value when the SUR

Table 1: Summary of averaged prediction errors for video clips in
four resolutions.

1080p 720p 540p 360p
∆SUR 0.039 0.038 0.037 0.042
∆QP 1.218 1.273 1.345 1.605

value is equal to 75% in the VideoSet, we adopt the same rule here
so that the JND position can be easily computed from the predicted
SUR curve.

The averaged prediction errors of the SUR curve and the JND
position for video clips in four resolutions were summarized in Table
1. We see that prediction errors increase as the resolution becomes
lower. This is probably due to the use of fixed W and H values in
generating spatial-temporal segments as described in Sec. 3. We
will finetune these parameters to obtain better prediction results in
the future.

To see the prediction performance of each individual clip, we
use 720p video as an example. The histogram of the SUR prediction
error is given in Fig. 4 (a), where the mean absolute error (MAE) is
0.038 for all test sequences. The predicted JND location versus the
ground-truth JND location is plotted in Fig. 4 (b), where each dot
denotes one video clip. As shown in the figure, most dots are dis-
tributed along the 45-degree line, which indicates that the predicted
JND is very close to the ground truth JND for most sequences.

5. CONCLUSION AND FUTURE WORK

A Satisfied User Ratio (SUR) prediction framework for H.264/AVC
coded video was proposed in this work. It took both the local qual-
ity degradation as well as the masking effect into consideration and
extract a compact feature vector and fed it into the support vector
regressor to obtain the predicted SUR curve. The first JND point can
be derived accordingly. The system achieves good performance in
all resolutions. We will adopt the same framework to predict loca-
tions of the second and the third JND points in the near future.
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