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ABSTRACT
In certain applications such as zero-resource speech process-
ing or very-low resource speech-language systems, it might
not be feasible to collect speech activity detection (SAD) an-
notations. However, the state-of-the-art supervised SAD tech-
niques based on neural networks or other machine learning
methods require annotated training data matched to the target
domain. This paper establish a clustering approach for fully
unsupervised SAD useful for cases where SAD annotations
are not available. The proposed approach leverages Harti-
gan dip test in a recursive strategy for segmenting the fea-
ture space into prominent modes. Statistical dip is invariant
to distortions that lends robustness to the proposed method.
We evaluate the method on NIST OpenSAD 2015 and NIST
OpenSAT 2017 public safety communications data. The re-
sults showed the superiority of proposed approach over the
two-component GMM baseline.
Index Terms: Clustering, Hartigan dip test, NIST OpenSAD,
NIST OpenSAT, speech activity detection, zero-resource
speech processing, unsupervised learning.

1. INTRODUCTION

Speech activity detection (SAD) is an essential front-end in
most speech systems such as automatic speech recognition,
speaker verification etc [1]. SAD methods are broadly con-
sidered into two categories: (1) supervised and (2) unsuper-
vised. While supervised approaches are trained on massive
amount of annotated data, unsupervised techniques do not re-
quire labeled data [2]. Supervised techniques tend to perform
poorly on mis-matched train and test conditions. Gaussian
mixture models (GMMs) have been extensively used for su-
pervised, semi-supervised and unsupervised SAD [1, 3, 4].
Robust SAD over degraded channels have been of interest for
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several years [5, 6, 7, 8, 9, 10, 11]. SAD methods are varied,
from energy-based [2] to deep neural networks (DNN) [7].
The DARPA RATS program supported the SAD research in
multiple phases that led to the development of advanced ap-
proaches [12, 13, 14, 15, 16, 17]. Recent work in [1] summa-
rized the SAD developments in context of semi-supervised
and unsupervised techniques. Specifically, it introduced the
idea of semi-supervised learning in conventional expectation-
maximization (EM) algorithm for semi-supervised GMM for
speech activity detection.

2. PROPOSED METHOD

2.1. Feature Extraction
The handcrafted five-dimensional features for Combo-SAD
approach were introduced in [3]. Authors performed mean
and variance normalization on each feature dimension. The
normalized features were later processed with principal com-
ponent analysis (PCA) for extracting the first principal com-
ponent that was named Combo feature. The Combo features
were later employed to consider a two-component GMM for
unsupervised SAD [3]. We used the two-component GMM
as baseline decision backend for comparison with proposed
Dip-based unsupervised backend in this study.

2.2. Hartigan dip test
The dip test [19] is a statistical test for hypothesizing the
modality of a distribution. It is based on the geometrical shape
of the feature distribution. The dip test tries to fit a piece-
wise linear function, that is convex then a concave, to the cu-
mulative distribution. The unimodality is decided based on
the goodness of this piecewise linear fit [18]. We leveraged
recursions based on dip test for clustering feature space into
speech and non-speech classes. This paper is motivated by
the recent success in applying Hartigan test for clustering ex-
tremely noisy data from other domains [20]. Application to
speech processing, particularly speech activity detection is a
novel contribution of this paper. By comparing the dip statis-
tics with that of a suitable reference unimodal distribution
(i.e., null distribution), a p-value is set for the null hypoth-
esis. Using the significance level, α = 0.05, we may reject or
favor the null hypothesis (unimodality) against the alternative
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Algorithm 1 computeDip
Input: speech features were sorted in ascending order i.e.,
o=[o1, o2, ...,oN ] where o1 ≤ o2 ≤ ... ≤ oN .
Output: primary modal interval [oL, oU ], DIP and p-value, p.

Step 1: Initialize, lower point oL= o1, upper point oU=
oN and D = 0.
Step 2: Compute greatest convex minorant G and least
concave majorant H of empirical distribution F of fea-
tures in interval [oL, oU ] [18]. Let the points of con-
tact with F are respectively, g1, g2, .., gk (for G) and h1,
h2, .., hm (for H).
Step 3: Let d= max |G(gi) - H(gi)| > max |G(hj) -
H(hj)| and the maximum occurs at hj ≤ gi ≤ hj+1.
Then, define o0L= gi, o0U= hj+1.
Step 4: Let d= max |G(hj) - H(hj)| ≥ max |G(gi) -
H(gi)| and the maximum occurs at gi ≤ hj ≤ gi+1.
Then, define o0L= gi, o0U= hj .
Step 5: If d ≤ D, Stop and set DIP= D

2 .
Step 6: If d > D, set D= max {

sup
oL≤o≤o0L

|G(o)− F (o)|, sup
oU≤o≤o0U

|H(o)− F (o)|

}, where sup is the supremum (supremum is the smallest
number that is greater than or equal to every number in
the set).
Step 7: Set oL = o0L, oU = o0U . Go to Step 2.

hypothesis (multi-modality). In this way, the dip test quan-
tifies the empirical cumulative distribution’s departure from
unimodality. Importantly, the dip test (see Algorithm 1 com-
puteDip) communicates the modal interval [oL,oU ], the p-
value and the DIP. It is important to note that the proposed
clustering approach works on all frames of a single utterance
thus it a utterance-level approach. The speech feature vector,
feats are sorted in increasing order. We still store the original
feature vector in memory for preserving the temporal order
(time information) of the frames. Let the sorted features (ob-
servations) be o = o1, o2,...,oN with o1 ≤ o2 ≤...≤ oN where
N is the length of the feature vector (number of frames). All
speech and non-speech modal intervals, (oi, oj) in the feature
space would be the pairs of values from o. If N is the length
of feats or equivalently o, total number of possible modal in-
tervals would be

(
N
2

)
= N(N−1)

2 that is combinations obtained
by choosing two values out of o vector. Now, for each modal
interval (oi, oj) we compute the greatest convex minorant, G
of empirical distribution, F in (-∞, oi) and least concave ma-
jorant, H of empirical distribution, F in (oj ,∞). Let dij be
the maximum distance between F and curves G, H in modal
interval (oi, oj). Then, the DIP is given as

DIP =
1

2
min{dij}, (1)

Fig. 1. Illustration of the dip-based clustering technique on
synthetic data with five classes, identified with R1 to R5
where three regions R3, R4 and R5 lie close to each other
in the feature space.

over all modal interval (oi,oj) such that the line segment from
[oi, F (oi) + 1

2dij] to [oj , F (oj)− 1
2dij] lies in the set defined

by

{o, y|oi ≤ o ≤ oj , F (o)−
1

2
dij ≤ y ≤ F (o) +

1

2
dij} (2)

The Equation 2 ensures that the greatest convex minorant,
modal segment and the least concave majorant together form
a unimodal distribution. The Algorithm 1 computeDip com-
pute the DIP value, the modal interval and the p-value, p from
the significance test.

2.3. Dip-based clustering
We used the dip test recursively to locate the modal intervals
that could contain speech or non-speech frames. We explain
the proposed clustering approach by looking at Figure 1 and
going through the Algorithm 2 Dip-SAD. Figure 1 illustrates
a simulated scenario showing five categories in the feature
space. The top sub-figure shows the histogram of features,
while the bottom one shows empirical cumulative distribu-
tion. Clearly, the region R3, R4 and R5 lie close to each
other in the feature space. On applying the clustering ap-
proach described in Algorithm 2 Dip-SAD, the first modal
interval detected consisted of R3, R4 and R5 (Step 3 in Dip-
SAD). On recursing again in this interval for each oj such that
oL ≤ oj ≤ oU , we get all the three regions R3, R4 and R5
that forms Imid i.e., middle modal intervals (Step 4). Next,
we recurse into the right and left side of the primary interval
to find if other segments were present (Step 5). While re-
cursing to the left and right, we included the nearest detected
modes from respective left or right region, i.e., for left recur-
sion, region R3 in included in the search region while for right
recursion, region R5 is included in the search region (Step 6).



Algorithm 2 Dip-SAD
Input: frame-level speech features from an utterance
Output: speech non-speech labels for each frame

Step 1: Sort the features in ascending order and let o=[o1,
o2, ...,oN ] be the ordered vector, where o1 ≤ o2 ≤ ... ≤
oN . The significance level, α is set to 0.05 for all experi-
ments reported in this paper.
Step 2: {oL, oU , p}← computeDip(o)
Step 3: If p > α, then the detected primary modal interval
is [oL, oU ]. Else, [o1, oN ] is primary modal interval.
Step 4: Recurse into the modal interval to find the
list Imid of the modal intervals within detected primary
mode.
Step 5: Now, we check to the right and left of the primary
modal interval recursively and extract additional modes if
found.
Step 6: {u}← min

oU∈Imid

(oU ) , {l}← max
oL∈Imid

(oL) .

Step 7: pl ← computeDip( ∀oj : oj ≤ u) , pu ←
computeDip( ∀oj : oj ≥ l) .
Step 8: Il ← If pl ≤ α, then ∀oj : oj < ol forms a multi-
mode segment. We recurse into this interval and return all
found modal intervals. Else return φ i.e., an empty set.
Step 9: Ir ← If pu ≤ α, then ∀oj : oj > ou forms
a multi-mode segment. We recurse into this interval and
return all found modal intervals. Else return φ i.e., an
empty set.
Step 10: The final set of all modal interval is
Il
⋃
Imid

⋃
Ir.

Step 11: As we knew that combo-SAD features have
high positive value for speech and low value for differ-
ent noises, the cluster with highest average feature value
is taken as speech and rest clusters as non-speech. In
some instances, where two prominent noise sources were
present such as non-stationary background noise and oc-
casional tonal impulsive noise, this approach led to three
or more clusters.

Thus, upper limit (u) for left search is minimum among all
detected upper limits, i.e., upper limit of region R3. On the
other hand, lower limit (l) for right search is chosen as max-
imum among all lower limits in detected regions, i.e., lower
limit of R5 (Step 6). This strategy ensures that the left and
right searches will either have unimodal (means same region
extended in that direction such as R5 here extends till the end
of the right region) or have multi-modalities (means different
modes in that direction such as R1 and R2 in left). This is
done in Step 6 of the Algorithm 2 Dip-SAD. After we have
upper limit, u and lower limit, l for left and right searches re-
spectively, we iterate using Algorithm 1 computeDip on both
regions to get the corresponding p-values, pl and pu (Step
7). From the corresponding p-values of such recursions, we
conclude unimodality if pl > α and return empty set φ. If
pl ≤ α, we find the corresponding modal interval and add it

to set Il that is set of modal intervals for left region (Step 8).
Similarly, we do for right search (Step 9) to get set Ir that is
set of modal intervals for the right region. The final set of all
modal intervals is the union of middle set Imid, left set Il and
right set Ir. The Figure 1 was for illustration of the dip-based
clustering approach. For speech activity detection (SAD), at
the end of recursive dip tests on detected primary modal in-
terval, left region and right region, we usually get just two,
three or four clusters. We found that when there are more
than one type of noise in an utterance such as non-stationary
background noise, occasional impulsive noise etc then each
non-speech region with a specific noise-type got clustered
separately. From [3], we know that the Combo features are
relatively large positive values for speech and very small pos-
itive or negative values for noise. We leverage this fact in
assigning clusters to speech or non-speech class. The clus-
ter with highest average sample value was assigned to speech
and rest clusters corresponded to non-speech. This assign-
ment was done automatically on the basis of average feature
value for each detected cluster. Authors in [17] also noticed
that the Combo features for OpenSAD data were significantly
tri-modal on some channels and tri-modal GMM helped in
gaining improvements in DCF (Section 6.4.1) [17].

3. RESULTS & DISCUSSIONS
We used 40ms windows with a 10ms skip-rate for extracting
the Combo features from each utterance. The sampling rate
for processing the speech data was kept at 8kHz. The NIST
OpenSAD 2015 program was organized to advance the state-
of-the-art SAD over extremely degraded communication
channels [21]. Six channels namely B, D, E, F, G and H from
the DARPA RATS were included in the training set along
with the source channel. This data consisted of re-transmitted
telephone conversations captured through different communi-
cation channels. This data was provided at 16 kHz sampling
rate with 16 bit resolution. We downsample the OpenSAD
data to 8 kHz for feature extraction and further processing.
In this study, we evaluate all channels of the training set
as techniques being evaluated are fully unsupervised and
parameter-free.

Recently, NIST organized speech analytic technologies
evaluation NIST OpenSAT 2017 [22]. It had three tasks: SAD,
key word search, and automatic speech recognition. We eval-
uated the proposed SAD approach for OpenSAT public safety
communications (PSC) data. It contained audio recordings
from sofa super store fire (SSSF) dispatcher that occurred on
June 18, 2007 in Charleston, South Carolina. The data con-
stitute real fire-response operational data that can not be du-
plicated through controlled scientific collection [22]. Thus,
the data is rich in naturalistic distortions such as (i) land mo-
bile radio transmission effects; (ii) speech under cognitive and
physical stress; (iii) varying background noise types and lev-
els etc [22]. The data consisted of six audio recordings, each
of approximately five minute duration, thus making up a total



Table 1. DCF (%) with two-second collar on all channels of Levantine Arabic (alv) in training set of NIST OpenSAD-2015
data. The scores were averaged over all audio files.

System alv −B alv −D alv −E alv − F alv −G alv −H alv − src
Combo-SAD 8.54 7.21 6.09 5.60 1.51 6.07 3.02

Proposed 13.21 6.40 5.83 4.19 1.34 3.63 2.68
Relative Improvement (%) -54.68 11.23 4.27 25.18 11.26 40.20 11.26

Table 2. DCF (%) with two-second collar on all channels of American English (eng) in training set of NIST OpenSAD-2015
data.

System eng −B eng −D eng −E eng − F eng −G eng −H eng − src
Combo-SAD 9.65 10.32 6.44 5.83 8.18 5.66 4.18

Proposed 10.68 8.18 5.12 2.96 9.30 4.11 6.87
Relative Improvement (%) -10.67 20.74 20.50 49.23 -13.69 27.38 -64.35

Table 3. DCF (%) with two-second collar on all channels of Urdu (urd) in training set of NIST OpenSAD 2015 data.
System urd−B urd−D urd−E urd− F urd−G urd−H urd− src

Combo-SAD 7.63 6.98 5.69 5.76 3.73 5.62 3.48
Proposed 5.85 5.51 5.30 5.26 3.67 4.78 4.22

Relative Improvement (%) 23.33 21.06 6.85 8.68 1.61 14.95 -21.26

of 30 minutes of dev data. The data were provided as 16-
bit signed integer PCM at 8 kHz sampling rate. The dev set
was shipped with the ground-truth SAD reference labels for
evaluation.

The evaluation metric used in NIST OpenSAD-2015 and
NIST OpenSAT-2017 was the detection cost function (DCF)
given by:

DCF = 0.25 ∗ Pfa + 0.75 ∗ Pmiss (3)

where Pfa is the false alarm rate (non-speech frames detected
as speech) and Pmiss is the miss rate (speech frames detected
as non-speech). The DCF values were computed for each au-
dio file and averaged to get the DCF for each channel over
three languages in NIST OpenSAD. We incorporated the two-
second collar around each speech region in accordance with
the NIST OpenSAD 2015 protocol. Table 1, Table 2 and
Table 3 shows the comparison of results obtained with the
proposed technique using a significance level, α = 0.05 and
Combo-SAD baseline. The baseline Combo-SAD approach
had Combo features considered for fitting a two-component
GMM. We chose 0.5 weights for both speech and non-speech
GMM during threshold selection in baseline [3]. Fixing the
weights made the approach parameter-free. Clearly, we can
see that the proposed approach led to significant relative gains
in DCF as compared to the baseline Combo-SAD except for
alv-B, eng-B, eng-G, eng-src, urd-src channels. The Combo-
SAD baseline is a model-based technique and it performs
well when Combo features are bi-modal. On channels where
Combo-SAD is better than the proposed Dip-SAD approach,
we found that Combo feature were distinctly bi-modal for ma-
jority of the utterances. Overall, we found that the Dip-SAD

Table 4. DCF with no collar on all audio recording in PSC
SSSF dev set from NIST OpenSAT 2017.

Audio GMM Proposed Relative
name (%) (%) Improvement(%)

sssf_dev_001 10.04 8.76 12.75
sssf_dev_002 9.25 11.03 -19.24
sssf_dev_003 6.20 5.67 8.55
sssf_dev_004 4.39 4.57 -4.10
sssf_dev_005 6.58 5.13 22.04
sssf_dev_006 8.29 7.88 4.95

Overall 7.46 7.17 3.89

had reasonable DCF gains over Combo-SAD on many chan-
nels. The poor performance of Dip-SAD on some channels
is possibly due to over-clustering of speech into two clusters.
In future, we would consider semi-supervised cluster assign-
ments for such cases. Table 4 shows the DCF with no collar
for all audio recordings in NIST OpenSAT PSC SSSF dev
set. We can see that the proposed Dip-SAD approach has
overall 3.89% relative improvement in DCF as compared to
GMM baseline with same features.

4. CONCLUSIONS

This study leverages Hartigan dip test for unsupervised
speech activity detection for scenarios that lack annotations.
We used Combo features in proposed clustering approach as
these were found to perform well on extremely noisy DARPA
RATS data. The proposed approach is deterministic and
parameter-free. Results on NIST OpenSAD-2015 data shows
proposed approach to be significantly better than the baseline



on many channels from three languages. The overall relative
improvement in DCF was 3.89% for NIST OpenSAT.
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