
INVARIANCES AND DATA AUGMENTATION FOR SUPERVISED MUSIC TRANSCRIPTION

John Thickstun? Zaid Harchaoui? Dean Foster† Sham M. Kakade?

? University of Washington, † Amazon
{thickstn,sham}@cs.washington.edu, zaid@uw.edu, dean@foster.net

ABSTRACT

This paper explores a variety of models for frame-based mu-
sic transcription, with an emphasis on the methods needed to
reach state-of-the-art on human recordings. The translation-
invariant network discussed in this paper, which combines
a traditional filterbank with a convolutional neural network,
was the top-performing model in the 2017 MIREX Multiple
Fundamental Frequency Estimation evaluation. This class of
models shares parameters in the log-frequency domain, which
exploits the frequency invariance of music to reduce the num-
ber of model parameters and avoid overfitting to the training
data. All models in this paper were trained with supervision
by labeled data from the MusicNet dataset, augmented by ran-
dom label-preserving pitch-shift transformations.

Index Terms— music information retrieval, convolu-
tional neural networks, invariances, learning

1. INTRODUCTION

The prominent success of deep learning in vision has popu-
larized end-to-end learning approaches to supervised classi-
fication tasks. These methods depend upon large quantities
of labeled training data. Many researchers have proposed su-
pervised approaches to music transcription using synthesized
training data, including recent MIREX participants [1, 2, 3].
While synthesized recordings provide an effectively infinite
supply of labeled data, MIREX results suggest that models
trained on synthetic data do not generalize well to human
recordings.

There is a large and growing collection of human record-
ings annotated with labels suitable for supervision of music
transcription [4, 5, 6, 7]. This prompts us to investigate mod-
els that can make effective use of this data. While the amount
of available data is substantial, it is not infinite. Furthermore,
frames of music sampled from an audio recording are more
highly correlated than, for example, a pair of images from Im-
ageNet. We therefore focus our attention on models and data
augmentation techniques that incorporate prior knowledge of
invariances in the problem domain to efficiently use the data.

Recent work shows that end-to-end architectures con-
struct a first-layer feature representation that is qualitatively
comparable to classical frequency filterbank transforms such

as the STFT or CQT [8, 7]. We will see that deep end-to-end
models overfit to current datasets of human performances.
This leads us to reconsider filterbanks as a low-level repre-
sentation of musical audio. By replacing the first layer of
an end-to-end network with a fixed filterbank transform, we
dramatically reduce the number of model parameters and the
attendant risk of overfitting.

The filterbank representation has a further advantage over
end-to-end learning: its channels are ordered from low to high
frequency. This order structure introduces a topology on the
channel axis (the frequency domain) that motivates a convo-
lutional architecture, analogous to how the Euclidean struc-
ture of R2 motivates the classic ConvNets used in computer
vision. Constructing a ConvNet on the channels of a filter-
bank representation yields performance gains from parameter
sharing that are not obviously replicable in an end-to-end ar-
chitecture.

In this paper, we explore convolutional architectures that
exploit the topological structure of a frequency filterbank rep-
resentation. In Section 2 we discuss related work on music
transcription. In Section 3 we will describe the network ar-
chitectures of the models under consideration. In Section 4
we discuss optimization of these networks, including label-
preserving transformations that augment the size of the train-
ing data. We present our qualitative results in Section 5 along
with quantitative results on the MusicNet dataset and MIREX
evaluation dataset.

2. RELATED WORKS

To the best of our knowledge, music transcription was first
considered as a supervised learning problem in [9] using la-
bels obtained from MIDI files to train an SVM on the spec-
trograms of synthesized recordings of these MIDIs. Subse-
quent work on supervised transcription improves upon these
results in two directions: use of more sophisticated models,
and construction of datasets of recorded human performances
(as opposed to synthesized data).

Labels on music recordings are typically obtained in one
of two ways. One approach is to perform music on instru-
ments that are wired to record a MIDI transcription as they
are played. These transcriptions are precise time-aligned la-
bels for a performance. The commercially available Yamaha

ar
X

iv
:1

71
1.

04
84

5v
1

 [
st

at
.M

L
]

 1
3

N
ov

 2
01

7

Disklavier piano is wired in this way, and has lead to the cre-
ation of datasets such as MAPS [5]. The second approach is
to solve an alignment problem, warping a musical score onto
a given recording. This alignment can be constructed using
an optimal-alignment protocol, as in the SyncRWC [4], Lakh
[6], and MusicNet [7] datasets. Or it can be constructed using
information supplied by a human annotator, for example the
Su dataset used for the MIREX evaluation [10].

The development of models for music transcription con-
ceptually factors into two subproblems: acoustic modeling
and time series prediction. In this paper, we focus on the
acoustic modeling problem, as introduced in [9]. Recent de-
velopments in this area model the acoustics using deep neural
networks [11, 12] or convolutional neural networks [13, 14,
7]. Some recent work explores hybrid models that combine a
deep or convolutional acoustic model with a recurrent time-
series model to jointly estimate transcriptions [15, 16].

Choosing an appropriate model for a supervised learning
problem requires consideration of both the structure of the
problem and the available data. A highly biased model can
compensate for a smaller dataset at the risk of making overly
powerful assumptions about the problem structure; a more
general model requires more data to overcome variance. The
frequency-invariance ideas that lead to the best models pre-
sented in this paper are anticipated in [16, 13, 14]. Our con-
tribution is to demonstrate that this class of models represents
a good bias-variance tradeoff for current datasets. Our dataset
augmentation techniques are inspired by analogous transfor-
mations introduced by the vision community for image clas-
sification [17, 18] and extensions of these ideas to audio [19].

3. METHODS

Given an audio segment x ∈ X , we seek to predict the notes
present at the midpoint of x, which we encode as a binary la-
bel vector y ∈ {0, 1}128. We accomplish this task by learning
a feature map fθ : X → H, along with a multivariate lin-
ear regression to estimate ŷ given the learned representation
f(x). We consider variants of four network architectures fθ
for this purpose.

We take x to be real-valued audio frame with values in the
range [−1, 1], sampled at 44.1kHz. We preprocess x by the
normalization x 7→ x/‖x‖2; this can be interpreted physically
as normalizing the audible volume of each frame. The first
layer of every network considered in this paper is a strided
convolution with a 4, 096-sample receptive field and a 512-
sample stride. We use a frame of 16, 384 samples, resulting
in 25 = (16384− 4096)/512 regions per frame.

The 16, 384-sample frame size reflects a tradeoff between
a shorter frame, which could miss important context for the
classification task, and a longer frame, which has diminish-
ing returns at computational cost. Very long frames grow the
number of parameters in the model to the point of overfitting.
The 512-sample stride is subject to a similar tradeoff.

3.1. Two layer networks

The simplest model we consider is a two layer network. For
each region of the layer-one convolution we compute a filter-
bank representation of the input, creating a spectrogram rep-
resentation H at layer two. We perform linear classification
on logH, the pointwise logarithm of the spectrogram. We
consider several variants on the choice of filterbank below, as
well as an end-to-end architecture where the filters are learned
from data.

(Short-time Fourier transform) This is the classical
filterbank consisting of Fourier coefficient magnitudes. We
truncate the magnitude spectrum at 6kHz because we find that
frequencies above this cutoff do not meaningfully improve
classification accuracy.

(Log-spaced filterbank) This filterbank consists of
512 sine and cosine filters with logarithmically-spaced fre-
quencies ranging from 50Hz to 6kHz. For each filter pair
wk,sin,wk,cos, we compute inner products with the input re-
gion xt ∈ [−1, 1]4096 and sum the square of these values,
analogous to the STFT:

filterk = (wTk,sinxt)2 + (wTk,cosxt)
2.

(Windowed filterbank) Here we apply the cosine win-
dow 1 − cos(t) to each filter in our filterbank. This combats
the spectral leakage phenomenon caused by boundary effects
introduced by the finite-window frequency analysis [20]. We
will examine the effects of windowing on both the STFT and
log-spaced filterbank.

(Learned filterbank) In this architecture, the filter co-
efficients wk are learned as parameters in the classifier op-
timization. This network is discussed at length in [7]. We
will revisit these results in Section 5 and compare them to the
hand-crafted filterbanks discussed above.

3.2. Three layer networks

A natural extension of the two layer networks discussed above
is a three layer network with a fully connected layer inter-
posed between the layer-one convolutions and the linear out-
put layer. If we interpret the output of layer one as a spec-
trogram, then this intermediate layer captures non-linear re-
lationships between features of this spectrogram. A filter in
layer two might be sensitive to a particular chord, for exam-
ple, or to a certain progression of notes. In Section 5 we report
results for two three-layer networks, one trained with a fixed
log-spaced, cosine-windowed filterbank at layer one, and the
other trained end-to-end from the raw audio.

In this vein, it is possible to build much deeper models on
top of either the raw audio or filterbank representation. These
ideas are explored in [12]. However, as we will see in Section
5, simply building a deeper architecture does not appear to
boost performance for the note classification task. Instead,
we will turn to translation-invariant networks that introduce
additional layers to capture specific invariances in the data.

3.3. Translation-invariant networks

Fig. 1. A translation-invariant network for note classification.
Audio input maps to Layer 1 according to the log-spaced,
cosine-windowed filterbank described in Section 3.1. Layer 1
maps to Layer 2 by convolving a set of 128 × 1 learned fil-
ters along the log-frequency axis at each fixed time location.
Layer 2 maps to Layer 3 by convolving again along the log-
frequency axis, this time with a set of filters of height 1 that
fully connect along the time and channel axes of Layer 2.
Notes are predicted at Layer 4 by linear classification on the
Layer 3 representation.

The translation-invariant network is built on top of a fil-
terbank, with two learned representational layers. See Fig-
ure 1 for a visual schematic and description of this architec-
ture. A handcrafted layer-one filterbank is crucial to support
the translation-invariant filters at layer two. Because the filters
are frequency-ordered, the layer-two filters can learn patterns
that are invariant to translations in frequency. Consider, for
example, a major triad chord. This pattern is preserved under
linear translations in log-frequency space. In the translation-
invariant architecture, a single filter consisting of only 128
parameters could be sensitive major triads rooted at arbitrary
frequencies. Compare this situation to a fully connected three

layer network (Section 3.2) which would require a separate
filter to identify this chordal pattern at each location in the
log-frequency spectrum.

The preceding arguments about music-theoretic concepts
like intervals and triads are contingent on the use of a log-
frequency filterbank for layer one. If we used a linear filter-
bank (for example, the STFT) then a linear shift in the fre-
quency domain would correspond to a non-linear shift in the
musical relationships between notes (low notes would trans-
late further than high notes) due to the human ear’s logarith-
mic perception of frequency. On the other hand, the physics
of audio (for example, overtones) exist on a linear scale. A
model that uses a linear filterbank can exploit translation in-
variances in the physics. We find empirically that log-scale
invariance yields greater performance gains for note classifi-
cation than linear-scale invariance.

3.4. Channel convolutions

Finally, we consider an end-to-end network that uses the same
architecture as the translation-invariant network, but treats the
weights in the layer-one filterbank as optimization parameters
(i.e. the filterbank is learned). Because the weights in layer
one are learned from a random initialization, it is not clear
that the learned filters will be ordered by frequency or that
their output channels will exhibit any topological structure.
However, because the layer-two convolutions in this architec-
ture are designed to exploit local topological structure in the
channels, we might hope that end-to-end parameter optimiza-
tion would find a good topological structure for this space, a
kind of self-organizing map [21].

4. TRAINING

We trained our models on the MusicNet dataset [7] with mini-
batch stochastic gradient optimization (150 samples per mini-
batch) using momentum (ρ = .95). The models are imple-
mented in TensorFlow on an NVIDIA 1080Ti GPU. The final
network weights are computed from a moving average of it-
erates with a decay factor of 2× 10−4.

Data augmentation. We augment our data by stretching
or shrinking our input audio with linear interpolation. This
corresponds to a pitch-shift in the frequency domain. For
small shifts (±5 semitones or less) the transformed audio
sounds natural to the human ear. Randomly shifting each
data points in a minibatch by an integral number of semitones
in the range [−5, 5] augments the dataset by an order of mag-
nitude. And the translational nature of this augmentation re-
inforces the architectural structure of the translation-invariant
networks described in Section 3. In addition to an integral
semitone shift, we also apply a continuous shift to each data
point in the range [−.1, .1]. This makes the models more
robust to tuning variation between recordings.

5. RESULTS

Our best translation invariant network achieves 77.3% aver-
age precision on MusicNet, outperforming the previous state
of the art reported in [12], and popular commercial software
[22]. Furthermore, we find that the translation-invariant archi-
tecture substantially outperforms previously proposed end-to-
end models on this dataset.

Model Avg. Prec. Acc. Err.

filterbanks
STFT (no compress) 40.4 15.9 .860
STFT 60.4 36.2 .681
log frequencies 62.7 39.8 .646
cosine windows 66.1 38.7 .637
log + windows 66.7 38.9 .633
three layer network 73.8 51.4 .541
end-to-end
learned filterbank [7] 67.8 48.9 .634
three layer network 70.8 48.8 .558
deep complex [12] 72.9 - -
channel convolution 73.3 50.4 .531
translation-invariant
baseline 76.5 53.2 .496
pitch-shift 77.1 54.5 .482
wide layer 3 77.3 55.3 .474
commercial software
Melodyne [22] 58.8 41.0 .760

Table 1. Average Precision, Accuracy, and Error for each of
the models discussed in this paper, evaluated using the test set
from [7]. Average Precision is computed by scikit-learn [23];
Accuracy and Error use mir eval [24]. The Accuracy and Er-
ror scores are assume a global prediction threshold of 0.4.

Performance is highly sensitive to layer one. While a
naive filterbank performs poorly, log-spaced, cosine-windowed
filters approach the performance of a learned filterbank (see
Table 1; compare “log + windows” to “learned filterbank”).
Also, note the importance of the compressive non-linearity
used for all models except the one marked “no compress.”

We consider three variants of the translation invariant ar-
chitecture: a baseline, the same model optimized with pitch-
shift transformations, and a model with a large number of hid-
den nodes at layer three (4, 096 versus 256). Pitch-shifting is
a clear improvement over the baseline. Increasing the number
of nodes at level 3 is beneficial but requires dramatically more
nodes for small performance gains; there may be an opportu-
nity to model the time-domain structure captured in this layer
more efficiently. We do not observe performance increases
by adding nodes to layer two (we use just 128 layer-two fil-
ters) suggesting that the translation-invariant architecture ef-
ficiently captures frequency-domain structure.

The end-to-end architectures significantly underperform

the corresponding architectures with a handcrafted layer-one
filterbank. Because filterbanks are essentially realizable in
an end-to-end architecture (see [7]; Section 4.3) we infer that
these optimizations have converged to either a local minimum
or a saddle point. In particular, the learned layer-one weights
of the channel convolution model exhibit some structure be-
tween neighboring filters, but not the global frequency order-
ing exhibited by the hand-crafted filterbanks.

Regarding the MIREX 2017 evaluation results, we remark
that MHMTM1 [3] is a neural network trained on synthesized
data. Several such models appeared in recent years at MIREX
[1, 2, 3]. Because these networks can be fed an effectively in-
finite stream of training data, the efficiencies considered in
this paper are not relevant and a wide variety of network ar-
chitectures could fit well to the training data. The fact that
these networks do not generalize well to benchmark data un-
derscores the importance of training on datasets of human per-
formances.

Model Prec. Rec. Acc. Etot

MIREX 2009 Dataset
THK1 82.2 78.9 72.0 .316
KD1 72.4 81.1 66.9 .419
MHMTM1 72.7 78.2 65.5 .441
WCS1 64.0 80.6 59.3 .569
ZCY2 62.7 56.2 50.6 .601
Su Dataset
THK1 70.1 54.6 51.0 .529
KD1 45.9 45.0 38.1 .745
WCS1 63.6 39.7 35.7 .700
MHMTM1 61.2 36.8 35.2 .676
ZCY2 40.9 28.2 26.2 .799

Table 2. MIREX 2017 results for the top 5 participants
by accuracy in each category of the Multiple Fundamental
Frequency Estimation challenge. THK1 is the wide layer 3
translation-invariant model described in this paper.

Conclusion. Regarding models: the best-performing
translation invariant model naively boosts the number of fea-
tures at level three to integrate temporal information. If we
could construct an invariance (perhaps a scale- or elastic-
invariance) in this layer, it might boost performance like
the translation invariance at layer one. Regarding dataset
augmentation, pitch-invariance is one of many possible label-
preserving transformations. Effective noise injection remains
an open problem. The authors tried adding Gaussian white
noise and saw no performance gains. But we believe that
a more realistic noise model could have a strong impact on
transcription performance.

Acknowledgements. This work was supported by NSF
Grant DGE-1256082, the Washington Research Foundation
for innovation in Data-intensive Discovery, and the CIFAR
program “Learning in Machines and Brains.”

6. REFERENCES

[1] D. Troxel, “Music transcription with a convolutional
neural network 2016,” in Music Information Retrieval
Evaluation eXchange (MIREX), 2016.

[2] M. Marolt, “Multiple fundamental frequency estimation
& tracking submission for mirex 2016,” in Music Infor-
mation Retrieval Evaluation eXchange (MIREX), 2016.

[3] S. Mita, G. Hatanaka, A. Meneses, T. Nattapong, and
M. Daiki, “Mirex 2017 : Multi-instrumental end-to-
end convolutional neural network for multiple f0 esti-
mation,” in Music Information Retrieval Evaluation eX-
change (MIREX), 2017.

[4] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,
“Rwc music database: Music genre database and musi-
cal instrument sound database,” in International Society
for Music Information Retrieval (ISMIR), 2003.

[5] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” in IEEE/ACM Transactions
on Audio, Speech and Language Processing (TASLP),
2010.

[6] C. Raffel, “Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching,” PhD Thesis, 2016.

[7] J. Thickstun, Z. Harchaoui, and S. Kakade, “Learning
features of music from scratch,” in International Con-
ference on Learning Representations (ICLR), 2017.

[8] S. Dieleman and B. Schrauwen, “End-to-end learning
for music audio,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2014.

[9] G. Poliner and D. P. W. Ellis, “A discriminative model
for polyphonic piano transcription,” in EURASIP Jour-
nal on Applied Signal Processing, 2007.

[10] L. Su and Yi-Hsuan Y., “Escaping from the abyss of
manual annotation: New methodology of building poly-
phonic datasets for automatic music transcription,” in
International Symposium on Computer Music Multidis-
ciplinary Research (CMMR), 2015.

[11] J. Nam, J. Ngiam, H. Lee, and M. Slaney, “A
classification-based polyphonic piano transcription ap-
proach using learned feature representations,” in In-
ternational Society for Music Information Retrieval (IS-
MIR), 2011.

[12] C. Trabelsi, O. Bilaniuk, D. Serdyuk, S. Subramanian,
J. F. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and
C. J. Pal, “Deep complex networks,” in Arxiv report:
https://arxiv.org/abs/1705.09792, 2017.

[13] R. Bittner, B. McFee, J. Salamon, P. Li, and J. Bello,
“Deep salience representations for f0 estimation in poly-
phonic music,” in International Society for Music Infor-
mation Retrieval (ISMIR), 2017.

[14] J. Pons and X. Serra, “Designing efficient architec-
tures for modeling temporal features with convolutional
neural networks,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2017.

[15] S. Sigtia, E. Benetos, N. Boulanger-Lewandowski,
T. Weyde, A. Garcez, and S. Dixon, “A hybrid recur-
rent neural network for music transcription,” in IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015.

[16] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neu-
ral network for polyphonic piano music transcription,”
in IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), 2016.

[17] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best prac-
tices for convolutional neural networks applied to vi-
sual document analysis,” in International Conference
on Document Analysis and Recognition (ICDAR), 2003.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems (NIPS), 2012.

[19] B. McFee, E. J. Humphrey, and J. P. Bello, “A software
framework for musical data augmentation,” in Interna-
tional Society for Music Information Retrieval (ISMIR),
2015.

[20] L. Rabiner and R. Schafer, “Introduction to digital
speech processing,” in Foundations and trends in sig-
nal processing, 2007.

[21] T. Kohonen, “The self-organizing map,” in Proceedings
of the IEEE, 1990.

[22] Celemony, “Melodyne,” http://www.celemony.
com/en/melodyne/what-is-melodyne.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” in
Journal of Machine Learning Research (JMLR), 2011.

[24] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Ni-
eto, D. Liang, and D. P. W. Ellis, “mir eval: A trans-
parent implementation of common mir metrics,” in In-
ternational Conference on Music Information Retrieval
(ISMIR), 2014.

http://www.celemony.com/en/melodyne/what-is-melodyne
http://www.celemony.com/en/melodyne/what-is-melodyne

A. EXTENDED STATISTICS

In this appendix, we reiterate our main results (Table 1) on an
expanded test set. We observe that multiple data points taken
from within one recording are highly correlated. Therefore,
to get a representative sample of MusicNet, it is important to
hold out a larger test set of recordings than the one introduced
in [7]. For the results in Table 3, we compute statistics on the
following extended test set (the first three recordings here are
the ones from [7]):

• Bach’s Prelude in D major for Solo Piano. WTK Book
1, No 5. Performed by Kimiko Ishizaka. MusicNet
recording id 2303.

• Mozart’s Serenade in E-flat major. K375, Movement
4 - Menuetto. Performed by the Soni Ventorum Wind
Quintet. MusicNet recording id 1819.

• Beethoven’s String Quartet No. 13 in B-flat major.
Opus 130, Movement 2 - Presto. Released by the
European Archive. MusicNet recording id 2382.

• Bach’s Cello Suite No. 4 in E-flat major, Movement 6
- Gigue. Released by the European Archive. MusicNet
recording id 2298.

• Bach’s Violin Partita No. 3 in E major, Movement 6 -
Bourree. Performed by Oliver Colbentston. MusicNet
recording id 2191.

• Beethoven’s Piano Sonata No. 30 in E major, Op. 109,
Movement 2 - Prestissimo. Performed by Paul Pitman.
MusicNet recording id 2556.

• Beethoven’s Wind Sextet in E-flat major, Op. 71,
Movement 3 - Menuetto - Quasi Allegretto. Performed
by the Skidmore Wind Ensemble. MusicNet recording
id 2416.

• Beethoven’s Violin Sonata No. 10 in G major, Op. 96,
Movement 3 - Scherzo: Allegro - Trio. Performed by
the Irrera Brothers. MusicNet recording id 2628.

• Schubert’s Piano Sonata in C minor, D958, Movement
3 - Menuetto Allegro. Released by the Museopen orga-
nization. MusicNet recording id 1759.

• Haydn’s String Quartet in D major, Op. 645, Move-
ment 3 - Menuetto Allegretto. Released by the Museopen
organization. MusicNet recording id 2106.

B. CODE

Code for all the experiments presented in this paper is avail-
able online at https://github.com/jthickstun/

Model Avg. Prec. Acc. Err.

filterbanks
STFT (no compress) 40.5 17.4 .855
STFT 62.9 42.4 .634
log frequencies 64.3 44.5 .619
cosine windows 66.1 44.1 .618
log + windows 66.4 44.4 .618
three layer network 76.3 55.4 .492
end-to-end
three layer network 72.9 53.0 .503
channel convolution 74.6 54.0 .483
translation-invariant
baseline 77.8 57.7 .449
pitch-shift 79.5 59.2 .432
wide layer 3 79.9 59.9 .423
commercial software
Melodyne [22] 57.9 39.5 .744

Table 3. Average Precision, Accuracy, and Error for each of
the models discussed in this paper, evaluated using the ex-
tended test set described in this appendix. Average Precision
is computed by scikit-learn version 0.19.1 [23] (please note
that older versions of scikit-learn contained a bug in the aver-
age precision metric implementation; see the release notes for
version 0.19.1; all average precision numbers in this paper are
computed using the implementation in version 0.19.1). Accu-
racy and Error use mir eval [24]. The Accuracy and Error
scores are assume a global prediction threshold of 0.4.

thickstun2018invariances/. The preprocessed ver-
sion of MusicNet used in these experiments is available at
http://homes.cs.washington.edu/˜thickstn/
icassp_data.tar.gz (11Gb download) and pre-trained
weights for each model are available at http://homes.
cs.washington.edu/˜thickstn/icassp_weights.
tar.gz (1.1Gb download). Further instructions on us-
ing this code and data can be found in the git repository’s
README.md document.

https://github.com/jthickstun/thickstun2018invariances/
https://github.com/jthickstun/thickstun2018invariances/
http://homes.cs.washington.edu/~thickstn/icassp_data.tar.gz
http://homes.cs.washington.edu/~thickstn/icassp_data.tar.gz
http://homes.cs.washington.edu/~thickstn/icassp_weights.tar.gz
http://homes.cs.washington.edu/~thickstn/icassp_weights.tar.gz
http://homes.cs.washington.edu/~thickstn/icassp_weights.tar.gz

	1 Introduction
	2 Related Works
	3 Methods
	3.1 Two layer networks
	3.2 Three layer networks
	3.3 Translation-invariant networks
	3.4 Channel convolutions

	4 Training
	5 Results
	6 References
	A Extended Statistics
	B Code

