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Abstract—Maintaining reliable millimeter wave (mmWave)
connections to many fast-moving mobiles is a key challenge
in the theory and practice of 5G systems. In this paper, we
develop a new algorithm that can jointly track the beam direction
and channel coefficient of mmWave propagation paths using
phased antenna arrays. Despite the significant difficulty in this
problem, our algorithm can simultaneously achieve fast tracking
speed, high tracking accuracy, and low pilot overhead. In static
scenarios, this algorithm can converge to the minimum Cramér-
Rao lower bound of beam direction with high probability.
Simulations reveal that this algorithm greatly outperforms several
existing algorithms. Even at SNRs as low as 5dB, our algorithm
is capable of tracking a mobile moving at an angular velocity
of 5.45 degrees per second and achieving over 95% of channel
capacity with a 32-antenna phased array, by inserting only 10
pilots per second.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is promising

to support the vastly growing data traffic for future wireless

systems [1]–[3]. In the mmWave band, only several distinctive

propagation paths exist, i.e., the line-of-sight path and a

few relatively strong reflected paths [4], [5]. Therefore, the

directional beamforming with large antenna arrays is necessary

to provide sufficiently strong received signal power.

To overcome the hardware limitation on the number of radio

frequency (RF) chains with large array size and high carrier

frequency, analog beamforming with phased antenna arrays

was proposed [3], [6]–[9]. A phased array can receive the

signal that is projected onto a certain spatial subspace, with

a cost of requiring much more pilots than the fully digital

arrays to find the rare and precious paths. When users move

quickly, it is needed to track the dynamic paths and even more

pilots are required. Hence, one fundamental challenge is how

to accurately track a large number of dynamic paths from

many high-mobility terminals/reflectors using limited pilots,

e.g., in V2V/V2I, high-speed railway, and UAV scenarios [10].
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The compressed sensing based algorithms (e.g., [11]–[13])

were proposed for phased arrays, which can reduce pilot

overhead and make beam direction acquisition faster. How-

ever, these algorithms are designed for static or quasi-static

scenarios, and will encounter performance deterioration under

high-mobility scenarios. To cope with high-mobility scenarios,

the algorithms in [14]–[16] use the prior information to track

the dynamic beam directions. However, these solutions do

not optimize the tracking scheme with the optimal training

beamforming vectors, which leads to poor tracking accuracy.

Since the tracking of a large number of dynamic paths can

be decoupled into tracking each path with low pilot overhead,

we have proposed a beam tracking algorithm in [17], [18] to

optimize both the training beamforming vectors and tracking

scheme. However, it assumes known channel coefficients,

while both channel coefficient and beam direction might be

unknown and time-varying in a real mobile system. In this pa-

per, we further develop a recursive beam and channel tracking

(RBCT) algorithm to jointly track the dynamic beam direction

and channel coefficient. In static scenarios, the Cramér-Rao

lower bound (CRLB) of beam direction is derived, which is a

function of the training beamforming vectors. We also obtain

the minimum CRLB by optimizing these training beamforming

vectors, and establish three theorems to verify that the RBCT

algorithm can converge to the minimum CRLB with high

probability. Simulations reveal that the RBCT algorithm can

achieve much faster tracking speed, lower tracking error, and

lower pilot overhead than several existing algorithms.

We use the following notations: A is a matrix, a is a

vector, a is a scalar. ‖A‖2 is the 2-norm of A. AT, AH and

A−1 are A’s transpose, Hermitian and inverse, respectively.

E[·] denotes expectation and Re {·}(Im {·}) obtains the real

(imaginary) part. The natural logarithm of x is log(x).

II. SYSTEM MODEL

Consider a phased array in Fig. 1, where M omnidirectional

antennas are placed on a line, with a distance d between two

neighboring antennas. Each antenna is connected through a

phase shifter to the same RF chain. In time-slot n, the pilot

symbols arrive at the array from an angle-of-arrival (AoA)

θn∈ [−π
2 ,

π
2 ]. The channel vector is given by

hn = βna(xn), (1)

where xn = sin(θn) is the sine of the AoA θn, a(xn) =
[

1,ej
2πd
λ

xn ,· · · ,ej 2πd
λ

(M−1)xn

]H

is the steering vector of the

http://arxiv.org/abs/1802.02125v2
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Fig. 1. System model.

arriving beam, λ is the wavelength, and βn=βre
n+jβim

n is the

complex channel coefficient.

To track the beam direction xn and channel coefficient

βn simultaneously, at least two observations using different

beamforming vectors are needed. Hence, we assume that two

pilot symbols are applied in each time-slot. To receive the i-th
(i = 1, 2) pilot symbol, let wn,i be the beamforming vector

in time-slot n, denoted by

wn,i =
a(xn + δn,i)√

M
, (2)

which is assumed to have the same form as the steering vector.

Combining the output signals of the phase shifters yields

yn,i = wH
n,ihns+ zn,i = βnw

H
n,ia(xn)s+ zn,i, (3)

where s is the pilot symbol that is known by the receiver,

and zn,i ∼ CN (0, σ2
0) is an i.i.d. circularly symmetric com-

plex Gaussian random variable. Given ψn = [βre
n , β

im
n , xn]

T

and Wn = [wn,1,wn,2], the conditional probability density

function of yn=[yn,1, yn,2]
T is given by

p(yn|ψn,Wn) =
1

π2σ4
0

e
−
‖yn−sβnWH

na(xn)‖2

2
σ2
0 . (4)

A beam and channel tracker determines the beamforming

matrix Wn, and provides an estimate ψ̂n = [β̂re
n , β̂

im
n , x̂n]

T

of the channel coefficient βn and the sine xn of the AoA.

Let ξ=(W1,W2, . . . , ψ̂1, ψ̂2, . . .) be a beam and channel

tracking policy. In particular, we consider the set Ξ of causal

beam and channel tracking policies: The estimate ψ̂n of time-

slot n and the beamforming matrix Wn+1 of time-slot n+ 1
are determined by using the history of beamforming matrices

(W1, . . . ,Wn) and channel observations (y1, . . . ,yn).

III. JOINT BEAM AND CHANNEL TRACKING PROBLEM

Our goal is to develop a joint beam and channel tracking

algorithm to minimize the beam tracking error. For any time-

slot n, the joint beam and channel tracking problem is given

by

min
ξ ∈ Ξ

E

[

(x̂n − xn)
2
]

s.t. E
[

β̂n

]

= βn, E [x̂n] = xn,

(5)

where the constraint ensures that ψ̂n = [β̂re
n , β̂

im
n , x̂n]

T is an

un-biased estimate of ψn=[βre
n , β

im
n , xn]

T.

Problem (5) is a constrained sequential control and esti-

mation problem that is difficult to solve optimally, where

the beamforming matrix Wn is the control action. First,

the system is only partially observed through the channel

observation yn. Second, both the beamforming matrix Wn

and the estimate ψ̂n need to be optimized: On the one hand,

the optimization of Wn is a non-convex optimization problem

of δn,i in (2), which is discussed in Section III-A. On the other

hand, as will be discussed in Section V, the optimization of ψ̂n

is also non-convex and has multiple local optimal estimates.

A. Cramér Rao Lower Bound of Beam Tracking

Now, we try to establish a lower bound of the MSE in (5)

in static scenarios, where the ground true of beam direction

and channel coefficient is invariant for all time-slot n, i.e.,

ψn = [βre,βim,x]T
∆
= ψ. Given the beamforming matrices

(W1, . . . ,Wn) of the first n time-slots, the MSE in (5) is

lower bounded by the CRLB as follows [19]:

E

[

(x̂n − x)2
]

≥





(

n
∑

i=1

I(ψ,Wi)

)−1




3,3

, (6)

where [·]i,k obtains the matrix element in row i and column

k, and I(ψ,Wi) is the 3 × 3 Fisher information matrix, i.e.,

[20]

I(ψ,Wi)
∆
=E

[

∂ log p(yi|ψ,Wi)

∂ψ
· ∂ log p(yi|ψ,Wi)

∂ψT

]

=
2|s|2
σ2
0





‖gi‖22 0 Re
{

gH
i ei
}

0 ‖gi‖22 Im
{

gH
i ei
}

Re
{

gH
i ei
}

Im
{

gH
i ei
}

‖ei‖22



 ,

(7)

where gi =WH
i a(x), ei = βWH

i ȧ(x), and ȧ(x)
∆
= ∂a(x)

∂x
. By

optimizing the beamforming matrices (W1, . . . ,Wn) on the

RHS of (6), we obtain the minimum CRLB as below:




(

n
∑

i=1

I(ψ,Wi)

)−1




3,3

≥ min
W1,...,Wn





(

n
∑

i=1

I(ψ,Wi)

)−1




3,3

= min
Wi

1

n

[

I(ψ,Wi)
−1
]

3,3
, (8)

where because the linear additive property of Fisher informa-

tion matrix [20], the optimal W1, . . . ,Wn are the same, and

from (7), we can get

[

I(ψ,Wi)
−1
]

3,3
=

σ2
0

2|sβ|2 · ‖gi‖22
‖gi‖22 ‖ei‖

2
2 −

∣

∣gH
i ei
∣

∣

2 . (9)

Problem (8) is non-convex with respect to δi,1 and δi,2, which

makes it too hard to obtain the analytical solution. However,

we can still use numerical method to find the solution, which

yields the optimal beamforming matrix W∗ as below:

W∗=
1√
M

[

a(x− δ∗), a(x+ δ∗)
]

, (10)

where δ∗
M→∞−−−−→ 2λ

3Md
, and when M ≥ 8, δ∗ is very close

to 2λ
3Md

. In Fig. 2, the optimal receiving beam directions are

depicted by plotting 1
[I(ψ,W)−1]3,3

vs. δi,1 and δi,2, where M =

32, d = 0.5λ, and the signal-to-noise ratio (SNR)
|sβ|2
σ2
0

is 5dB.

It can be observed that δ∗ is almost the same as 2λ
3Md

and there

are two symmetric optimal solutions. Therefore, we will set

δ∗ = 2λ
3Md

in the proposed RBCT algorithm in Section IV.
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ψ̂n= ψ̂n−1−
an

‖sĝn‖22 (l2n−|cn|2)
·





l2n−Im{cn}2 Re{cn} Im{cn} −‖ĝn‖22 Re{cn}
Re{cn} Im{cn} l2n−Re{cn}2 −‖ĝn‖22 Im{cn}
−‖ĝn‖22 Re{cn} −‖ĝn‖22 Im{cn} ‖ĝn‖42



·





Re{sHĝH
n(yn−sβ̂n−1ĝn)}

Im{sHĝH
n(yn−sβ̂n−1ĝn)}

Re{sHêH
n(yn−sβ̂n−1ĝn)}



. (13)

Fig. 2. Optimization of Problem (8) using numerical method.

M pilots for beam sweeping 2 pilots per time-slot for tracking

Data

time-slotPilot

Data

Fig. 3. Frame structure.

IV. RECURSIVE BEAM AND CHANNEL TRACKING

We propose a two-stage algorithm to approach the minimum

CRLB in (8), which is given below:

Recursive Beam and Channel Tracking (RBCT):

1) Coarse Beam Sweeping: M pilots are used successively

(see Fig. 3). The beamforming vector to receive the m-th

observation ỹm is set as w̃m = 1√
M
a
(

2m
M

− M+1
M

)

,m =

1, . . . ,M . Obtain the initial estimate ψ̂0=[β̂re
0 , β̂

im
0 , x̂0]

T by

x̂0=argmax
x̂∈X

∣

∣

∣
a(x̂)HW̃ỹ

∣

∣

∣
, β̂0=

[

W̃Ha(x̂0)
]+

ỹ, (11)

where ỹ = [ỹ1, . . . , ỹM ]T, W̃ = [w̃1, . . . , w̃M ], X =
{

1−M0

M0
, 3−M0

M0
, . . . , M0−1

M0

}

, the size M0(M0 ≥ M) of X de-

termines the estimation resolution, and X+ ∆
= (XHX)−1XH.

2) Beam and Channel Tracking: In time-slot n, two pilots

are received at the beginning (see Fig. 3) using beamforming

vectors wn,1 and wn,2, given by

wn,1 =
a(x̂n−1 − δ∗)√

M
, wn,2 =

a(x̂n−1 + δ∗)√
M

, (12)

and the estimate ψ̂n = [β̂re
n , β̂

im
n , x̂n]

T is updated by (13)

on the top of the page, where ĝn = WH
na(x̂n−1), ên =

β̂n−1WH
n ȧ(x̂n−1), ln = ‖ĝn‖2‖ên‖2, and cn = ĝH

nên.

In Stage 1, the exhaustive sweeping is used, and the initial

estimate ψ̂0 is obtained in (11) by using the orthogonal

matching pursuit method (e.g., [13]). This ensures that the

initial beam direction x̂0 is within the mainlobe set, i.e.,

B (x0)
∆
=
(

x0 −
λ

Md
, x0 +

λ

Md

)

. (14)

In Stage 2, the recursive tracker is motivated by the follow-

ing maximization likelihood problem:

max
ψ̂n

{

max
Wn

n
∑

i=1

E

[

log p
(

yi|ψ̂n,Wi

)

∣

∣

∣

∣

ψ̂n,W1,. . . ,Wi,
y1,. . . ,yi−1

]

}

, (15)

where Wn=[wn,1,wn,2] is subject to (2). We propose a two-

layer nested optimization algorithm to find the solution of (15).

In the outer layer, we use the stochastic Newton’s method to

update the estimate ψ̂n, given by [19]

ψ̂n= ψ̂n−1−anE
[

H(ψ̂n−1,Wn)
]−1

· ∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

= ψ̂n−1+anI(ψ̂n−1,Wn)
−1 · ∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1
, (16)

where H(ψ̂n−1,Wn) =
∂2 log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1∂ψ̂
T

n−1

is the Hessian

matrix, I(ψ̂n−1,Wn) can be calculated by using (7), an is

the step-size that will be specified later, and

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1
=− 2

σ2
0





Re{sHĝH
n(yn−sβ̂n−1ĝn)}

Im{sHĝH
n(yn−sβ̂n−1ĝn)}

Re{sHêH
n(yn−sβ̂n−1ĝn)}



,

(17)

with ĝn =WH
na(x̂n−1) and ên = β̂n−1WH

nȧ(x̂n−1). Plugging

I(ψ̂n−1,Wn) and (17) in (16), we get (13). In the inner layer,

it is equivalent to minimize the CRLB to update Wn, i.e.,

min
Wn

[

I(ψ̂n−1,Wn)
−1
]

3,3
, (18)

which results in (12).

Remark. Different from the beam tracking algorithm in [17],

[18], the RBCT algorithm uses two pilots and jointly updates

the beam direction and channel coefficient in each time-slot.

V. ASYMPTOTIC OPTIMALITY ANALYSIS

There are multiple stable points for (13), which correspond

to the local optimal estimates for Problem (5) [21]. Hence

Problem (5) is non-convex for the estimate ψ̂n. To study these

stable points, we rewrite (13) as follows:

ψ̂n = ψ̂n−1 + an

(

f
(

ψ̂n−1,ψn

)

+ ẑn

)

, (19)

where f
(

ψ̂n−1,ψn

)

is defined in (20), ẑn is defined in

(21), with ĝn = WH
na(x̂n−1), ên = β̂n−1WH

n ȧ(x̂n−1), ln =
‖ĝn‖2‖ên‖2, cn= ĝH

nên, and zn=[zn,1, zn,2]
T
.

A stable point ψ̂n−1 should satisfy: 1) f
(

ψ̂n−1,ψn

)

=0,

and 2)
∂f(ψ̂n−1,ψn)

∂ψ̂
T

n−1

is a negative definite matrix. Let

Sn=







ψ̂n−1 : f
(

ψ̂n−1,ψn

)

=0,
∂f
(

ψ̂n−1,ψn

)

∂ψ̂
T

n−1

≺ 0







, (22)
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f
(

ψ̂n−1,ψn

)

∆
=E

[

I(ψ̂n−1,Wn)
−1 · ∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

∣

∣

∣

∣

∣

ψn

]

=− 2

σ2
0

I(ψ̂n−1,Wn)
−1 ·





Re{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Im{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Re{êH
n(βnW

H
na(xn)−β̂n−1ĝn)}



.

(20)

ẑn
∆
= I(ψ̂n−1,Wn)

−1 · ∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

− f
(

ψ̂n−1,ψn

)

= −2|s|2
σ2
0

I(ψ̂n−1,Wn)
−1 ·





Re{sHĝH
nzn}

Im{sHĝH
nzn}

Re{sHêH
nzn}



. (21)

∂f
(

ψ̂n−1,ψn

)

∂ψ̂
T

n−1

=
∂I(ψ̂n−1,Wn)

−1

∂ψ̂
T

n−1

·E
[

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

∣

∣

∣

∣

∣

ψn

]

+I(ψ̂n−1,Wn)
−1 ·

∂E

[

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

∣

∣

∣

∣

ψn

]

∂ψ̂
T

n−1

. (24)

denote the stable points set at time-slot n. Then, we can verify

ψn∈Sn as below:

1) When ψ̂n−1 = ψn, we have βnW
H
na(xn)−β̂n−1ĝn = 0.

Hence, f(ψn,ψn)=0.

2) From (20), we can get

f
(

ψ̂n−1,ψn

)

= I(ψ̂n−1,Wn)
−1

· E
[

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

∣

∣

∣

∣

∣

ψn

]

.
(23)

Then, the derivative can be obtained by (24). Similar to

1), the first term in (24) is 0 when ψ̂n−1 = ψn. More-

over, the partial derivative
∂E

[

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

∣

∣

∣

∣

ψn

]

∂ψ̂
T

n−1

in

the second term is equal to I(ψn,Wn) when ψ̂n−1 =

ψn. Therefore, when ψ̂n−1 = ψn, we have

∂f
(

ψ̂n−1,ψn

)

∂ψ̂
T

n−1

= −





1 0 0
0 1 0
0 0 1



 ≺ 0. (25)

Note that except for the real direction xn, the antenna array

gain is quite low at other local optimal stable points in Sn.

Hence, one key challenge is how to ensure that the RBCT

algorithm converges to the real direction xn, instead of other

local optimal stable points in Sn.

In static beam tracking, where ψn =ψ= [βre,βim,x]T and

Sn = S ∆
=
{

ψ̂n−1 : f
(

ψ̂n−1,ψ
)

= 0,
∂f(ψ̂n−1,ψ)

∂ψ̂
T

n−1

≺ 0
}

, we

adopt the diminishing step-sizes, given by [19], [21], [22]

an =
α

n+N0
, n = 1, 2, . . . , (26)

where α>0 and N0≥0. We use the stochastic approximation

and recursive estimation theory [19], [21], [22] to analyze the

RBCT algorithm.To support the more general joint beam and

channel tracking scenario than [17], [18], three new theorems

are developed to resolve the challenge mentioned above:

Theorem 1 (Convergence to Stable Points). If an is given

by (26) with any α > 0 and N0 ≥ 0, then ψ̂n converges to a

unique point within S with probability one.

Proof. See the detailed proof in Appendix A.

Time-slot number
101 102

M
S
E

10-8

10-6

10-4

10-2

100 802.11ad
Compressed sensing
Beam tracking
RBCT
minimum CRLB

Fig. 4. MSE vs. time-slot number in static scenarios.

Hence, for general step-size parameters α and N0 in (26),

x̂n converges to a stable point in S.

Theorem 2 (Convergence to the Real Beam Direction x).

If (i) x̂0∈B (x), (ii) an is given by (26) with any α>0, then

there exist N0≥0 and C>0 such that

P ( x̂n → x| x̂0 ∈ B (x)) ≥ 1− 6e
−C|s|2

α2σ2
0 . (27)

Proof. See the detailed proof in Appendix B.

By Theorem 2, if the initial point x̂0 is in the mainlobe

B(x), the probability that x̂n does not converge to x decades

exponentially with respect to |s|2/α2σ2
0 . Hence, one can

increase the transmit SNR |s|2/σ2
0 and reduce the step-size

parameter α to ensure x̂n→x with high probability.

Theorem 3 (Convergence to x with the Minimum MSE).

If (i) an is given by (26) with α = 1 and any N0 ≥ 0, and

(ii) ψ̂n → ψ, then

lim
n→∞

nE

[

(x̂n − x)
2 ∣
∣ψ̂n → ψ

]

=
[

I(ψ,W∗)−1
]

3,3
. (28)

Proof. See the detailed proof in Appendix C.

Theorem 3 tells us that α should not be too small: If α =
1, then the minimum CRLB on the RHS of (8) is achieved

asymptotically with high probability.

VI. NUMERICAL RESULTS

We compare the RBCT algorithm with three reference

algorithms: the compressed sensing algorithm [13], the IEEE

802.11ad algorithm [14], and the beam tracking algorithm
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[18]. The first two algorithms have the same configuration

as that in Section VI of [18]. The third one uses the same

training beamforming vectors as the RBCT algorithm, i.e., in

each time-slot, it receives two pilots with the beamforming

vectors in (12), and the beam direction is tracked by using both

observations. Moreover, its channel coefficient is obtained with

a least square estimator by using these observations. Consider

the system model in Section II with M = 32 antennas, and

the antenna spacing is d=0.5λ. The pilot symbol is s= 1+j
2 ,

and the transmit SNR
|s|2
σ2 is set as 5dB. To ensure fairness,

we assume that 2 pilot symbols are received in each time-slot,

hence all the algorithms have the same pilot overhead.

In static scenarios, we set the step-size as an=
1
n
, n≥1. The

real AoA θ is randomly generated by a uniform distribution

on [−90◦, 90◦] in each realization, and the results are averaged

over 10000 random realizations. Figure 4 plots the MSE over

time. It can be observed that the MSE of the RBCT algorithm

converges to the minimum CRLB in (8), which is much

smaller than the reference algorithms.

In dynamic scenarios, we set the step-size as a constant

value, i.e., an=1, n≥1. The channel variation is modeled as:

The AoA θn=θn−1+δn−1·ω where θ0 = 0, δn ∈ {−1,1} de-

notes the rotation direction, and ω∈ [0, 0.04] is a fixed angular

velocity. The rotation direction δn is chosen such that θn varies

within [−π
3 ,

π
3 ]. The channel coefficient βn(E

[

|βn|2
]

= 1) is

subject to Rician fading with a K-factor κ=15dB, according

to the channel model proposed in [23]. In Fig. 5 and 6,

one can observe that the RBCT algorithm can support much

higher angular velocities and data rates than other algorithms.

According to Fig. 6, the RBCT algorithm can achieve 95% of

channel capacity when the angular velocity is 0.19rad (1.09

degrees) per time-slot. If 5 time-slots last for one second, i.e.,

10 pilots per second received, then the RBCT algorithm is

capable of tracking a mobile moving at an angular velocity of

5.45 degrees per second and achieving over 95% of channel

capacity.

VII. CONCLUSION

We have developed a joint beam and channel tracking

algorithm for mmWave phased antenna arrays, and established

its convergence and asymptomatic optimality. Our simulation

results show that the proposed algorithm can achieve much

faster tracking speed, lower beam tracking error, and higher

data rate than several state-of-the-art algorithms, with the same

pilot overhead.
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APPENDIX A

PROOF OF THEOREM 1

Before providing the proof, let us provide some useful def-

initions. In static beam tracking, where ψn=ψ=[βre,βim,x]T

and Sn = S ∆
=
{

ψ̂n−1 : f
(

ψ̂n−1,ψ
)

= 0,
∂f(ψ̂n−1,ψ)

∂ψ̂
T

n−1

≺ 0
}

,

recall the recursive procedure (19):

ψ̂n = ψ̂n−1 + an

(

f
(

ψ̂n−1,ψ
)

+ ẑn

)

, (29)

where f
(

ψ̂n−1,ψ
)

and ẑn are given in (20) and (21) sepa-

rately. From (21), we have

ẑn ∼ N
(

0, I(ψ̂n−1,Wn)
−1
)

, (30)

where E [ẑn] = 0, and I(ψ̂n−1,Wn)
−1 is the covariance

matrix of ẑn calculated by (31). In (31), the step (a) can be

obtain as follows:

• Since zn = [zn,1, zn,2]
T

consists of two i.i.d. circularly

symmetric complex Gaussian random variables, we get

sHĝH
nzn ∼ CN

(

0, ‖sĝn‖22 σ2
0

)

, (32)

and

sHêH
nzn ∼ CN

(

0, ‖sên‖22 σ2
0

)

. (33)

• By splitting the real part and imaginary part, we obtain


















































Re{sHĝH
nzn}=Re{sHĝH

n}Re{zn}−Im{sHĝH
n} Im{zn},

Im{sHĝH
nzn}=Re{sHĝH

n} Im{zn}+Im{sHĝH
n}Re{zn},

Re{sHêH
nzn}=Re{sHêH

n}Re{zn}−Im{sHêH
n} Im{zn},

Re{sHĝH
nsên}= |s|2 Re{ĝH

nên}
= Re{sHĝH

n}Re{sên}−Im{sHĝH
n} Im{sên},

Im{sHĝH
nsên}= |s|2 Im{ĝH

nên}
= Re{sHĝH

n} Im{sên}+Im{sHĝH
n}Re{sên}.

(34)

• Combining (32), (33) and (34) yields






















































E
[

Re{sHĝH
nzn}2

]

=E
[

Im{sHĝH
nzn}2

]

=
|s|2σ2

0

2
‖ĝn‖22 ,

E
[

Re{sHêH
nzn}2

]

=
|s|2σ2

0

2
‖ên‖22 ,

E
[

Re{sHĝH
nzn}·Im{sHĝH

nzn}
]

= 0,

E
[

Re{sHĝH
nzn}·Re{sHêH

nzn}
]

=
|s|2σ2

0

2
Re{ĝH

nên},

E
[

Im{sHĝH
nzn}·Re{sHêH

nzn}
]

=
|s|2σ2

0

2
Im{ĝH

nên}.
(35)

Hence, we have

E















Re{sHĝH
nzn}

Im{sHĝH
nzn}

Re{sHêH
nzn}



·





Re{sHĝH
nzn}

Im{sHĝH
nzn}

Re{sHêH
nzn}





T










=
σ4
0

4
I(ψ̂n−1,Wn).

(36)

• Plugging (36) into (31) yields the result of step (a).

Let {Gn : n ≥ 0} be an increasing sequence of σ-fields

of {ψ̂0, ψ̂1, ψ̂2, . . .}, i.e., Gn−1 ⊂ Gn, where G0
∆
= σ(ψ̂0)

and Gn
∆
= σ(ψ̂0, ẑ1, . . . , ẑn) for n ≥ 1. Because the ẑn’s

are composed of i.i.d. circularly symmetric complex Gaussian

random variables with zero mean, ẑn is independent of Gn−1,

and ψ̂n−1∈Gn−1. Hence, we have

E

[

f
(

ψ̂n−1,ψ
)

+ ẑn

∣

∣

∣
Gn−1

]

(37)

= E

[

f
(

ψ̂n−1,ψ
)∣

∣

∣
Gn−1

]

+ E [ ẑn| Gn−1] = f
(

ψ̂n−1,ψ
)

,

for n ≥ 1.

Theorem 5.2.1 in [21, Section 5.2.1] provided the sufficient

conditions under which x̂n converges to a unique point within

a set of stable points with probability one. We will prove that

when the step-size an is given by (26) with any α > 0 and

N0 ≥ 0, our algorithm satisfies its sufficient conditions below:

1) Step-size requirements:






































an =
α

n+N0
→ 0,

∞
∑

n=1

an =

∞
∑

n=1

α

n+N0
= ∞,

∞
∑

n=1

a2n =

∞
∑

n=1

α2

(n+N0)2
≤

∞
∑

i=1

α2

i2
< ∞.

(38)

2) We need to prove that

supn E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)

+ ẑn

∥

∥

∥

2

2

]

< ∞.

From (29) and (30), we have

E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)

+ ẑn

∥

∥

∥

2

2

]

(39)

=E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)
∥

∥

∥

2

2
+ 2f

(

ψ̂n−1,ψ
)T

ẑn + ‖ẑn‖22
]

(a)
=E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)
∥

∥

∥

2

2

]

+ tr
(

I(ψ̂n−1,Wn)
−1
)

,

where step (a) is due to (30) and that ẑn is independent

of f
(

ψ̂n−1,ψ
)

.

From (17) and (23), we have
∥

∥

∥
f
(

ψ̂n−1,ψ
)∥

∥

∥

2

2
≤
∥

∥

∥
I(ψ̂n−1,Wn)

−1
∥

∥

∥

2

F
(40)

·

∥

∥

∥

∥

∥

∥

2|s|2
σ2
0





Re{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Im{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Re{êH
n(βnW

H
na(xn)−β̂n−1ĝn)}





∥

∥

∥

∥

∥

∥

2

2

.

Due to that the Fisher information matrix is invertible,

we get
∥

∥

∥
I(ψ̂n−1,Wn)

−1
∥

∥

∥

2

F
< ∞. (41)
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E

[

(ẑn − E [ẑn]) (ẑn − E [ẑn])
T
]

=
4

σ4
0

I(ψ̂n−1,Wn)
−1 ·E















Re{sHĝH
nzn}

Im{sHĝH
nzn}

Re{sHêH
nzn}



·





Re{sHĝH
nzn}

Im{sHĝH
nzn}

Re{sHêH
nzn}





T










·I(ψ̂n−1,Wn)
−1 (31)

(a)
= I(ψ̂n−1,Wn)

−1.

In addition, since Wn=[wn,1,wn,2], ĝn=WH
na(x̂n−1),

ên= β̂n−1WH
nȧ(x̂n−1),

∣

∣wH
n,ia(x)

∣

∣ =

∣

∣

∣

∣

∣

M
∑

m=1

1√
M

e−j( 2πd
λ

x−wmn,i)

∣

∣

∣

∣

∣

(42)

≤
M
∑

m=1

1√
M

∣

∣

∣
e−j( 2πd

λ
(m−1)x−wmn,i)

∣

∣

∣

=
√
M < ∞,

and

∣

∣wH
n,iȧ(x)

∣

∣ =

∣

∣

∣

∣

∣

M
∑

m=1

−j
2πd(m− 1)

λ
√
M

e−j( 2πd
λ

x−wmn,i)

∣

∣

∣

∣

∣

≤
M
∑

m=1

2πd(m− 1)

λ
√
M

∣

∣

∣
e−j( 2πd

λ
(m−1)x−wmn,i)

∣

∣

∣

=
πd

√
M(M − 1)

λ
< ∞, (43)

for i = 1, 2 and all possible x, we can get

∥

∥

∥

∥

∥

∥

2|s|2
σ2
0





Re{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Im{ĝH
n(βnW

H
na(xn)−β̂n−1ĝn)}

Re{êH
n(βnW

H
na(xn)−β̂n−1ĝn)}





∥

∥

∥

∥

∥

∥

2

2

<∞. (44)

Hence, combining (41) and (44), we have

E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)∥

∥

∥

2

2

]

< ∞. (45)

From (41), we can get tr
(

I(ψ̂n−1,Wn)
−1
)

< ∞. Then,

we can obtain that

supn E

[

∥

∥

∥
f
(

ψ̂n−1,ψ
)

+ ẑn

∥

∥

∥

2

2

]

< ∞. (46)

3) The function f
(

ψ̂n−1,ψ
)

should be continuous with

respect to ψ̂n−1.

By using (12), we have

WH
na(x)=

[

∑M
m=1

1√
M
e−j 2πd

λ
(m−1)(x−x̂n−1+δ∗)

∑M

m=1
1√
M
e−j 2πd

λ
(m−1)(x−x̂n−1−δ∗)

]

. (47)

Since e−j 2πd
λ

(m−1)(x−x̂n−1±δ∗) is continuous with re-

spect to x̂n−1, and WH
na(x) is the summation of a finite

amount of e−j 2πd
λ

(m−1)(x−x̂n−1±δ∗),m = 1, . . . ,M , we

can get that WH
na(x) is continuous with respect to

ψ̂n−1 = [β̂re
n−1, β̂

im
n−1, x̂n−1]

T. Similarly, we can prove

that ĝn = WH
na(x̂n−1), ên = β̂n−1WH

nȧ(x̂n−1), ln =
‖ĝn‖2‖ên‖2, and cn = ĝH

nên are all continuous with

respect to ψ̂n−1.

From (20), it can be observed that f
(

ψ̂n−1,ψ
)

is com-

posed of finite numbers of WH
na(xn), ĝn, ên, ln and cn.

Hence, we can conclude that f
(

ψ̂n−1,ψ
)

is continuous

with respect to ψ̂n−1.

4) Let γn = E

[

f
(

ψ̂n−1,ψ
)

+ ẑn

∣

∣

∣
Gn−1

]

− f
(

ψ̂n−1,ψ
)

.

We need to prove that
∑∞

n=1 ‖anγn‖2 < ∞ with

probability one.

From (37), we get γn = 0 for all n ≥ 1. So we have
∑∞

n=1 ‖anγn‖2 = 0 < ∞ with probability one.

By Theorem 5.2.1 in [21], x̂n converges to a unique stable

point within the stable points set S with probability one.

APPENDIX B

PROOF OF THEOREM 2

Theorem 2 is proven in three steps:

Step 1: We will construct two continuous processes based

on the discrete process ψ̂n = [β̂re
n , β̂

im
n , x̂n]

T, i.e., ψ̄(t)
∆
=

[β̄re(t), β̄im(t), x̄(t)]T and ψ̃
n
(t)

∆
=[β̃re,n(t), β̃im,n(t), x̃n(t)]T.

Define the discrete time parameters: t0
∆
= 0, tn

∆
=
∑n

i=1 ai,
n ≥ 1. The first continuous process ψ̄(t), t ≥ 0 is the linear

interpolation of the sequence ψ̂n, n ≥ 0, where ψ̄(tn) =
ψ̂n, n ≥ 0 and ψ̄(t) is given by

ψ̄(t)= ψ̄(tn)+
(t−tn)

an+1

[

ψ̄(tn+1)−ψ̄(tn)
]

, t∈ [tn, tn+1].

(48)

The second continuous process ψ̃
n
(t) is a solution of the

following ordinary differential equation (ODE):

dψ̃
n
(t)

dt
= f

(

ψ̃
n
(t),ψ

)

, (49)

for t ∈ [tn,∞), where ψ̃
n
(tn) = ψ̄(tn) = ψ̂n, n ≥ 0. Hence,

we have

ψ̃
n
(t) = ψ̄(tn) +

∫ t

tn

f
(

ψ̃
n
(v),ψ

)

dv, t ≥ tn. (50)

Step 2: By using the continuous processes ψ̄(t) and ψ̃
n
(t),

we will form a sufficient condition for the convergence of the

discrete process x̂n.

We first construct a time-invariant set I that contains the

real direction x within the mainlobe, i.e., x ∈ I ⊂ B(x). Pick

δ such that1

inf
v∈∂B(x),t≥0

∣

∣v − x̃0(t)
∣

∣ = inf
v∈∂B(x)

|v − x̂b| > δ > 0, (51)

where x̂b = x̃0(tb) is the beam direction of the process ψ̃
0
(t)

that is closest to the boundary of the mainlobe (see e.g., Fig.

1The boundary of the set B(x) is denoted by ∂B(x).
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Fig. 7. An illustration of the invariant set I .

7). Note that when t ≥ tb, the solution ψ̃
0
(t) of the ODE (49)

will approach the real channel coefficient β and beam direction

x monotonically as time t increases. Hence, the invariant set

I can be constructed as follows:

I =
(

x− |x− x̂b| − δ, x+ |x− x̂b|+ δ
)

⊂ B(x). (52)

An example of the invariant set I is illustrated in Fig. 7.

Then, we will establish a sufficient condition in Lemma 1

that ensures x̂n∈I for n≥0, and hence from Corollary 2.5 in

[22], we can obtain that {x̂n} converges to x. Before giving

Lemma 1, let us provide some definitions first:

• Pick T > 0 such that the solution ψ̃
0
(t), t ≥ 0 of

the ODE (49) with ψ̃
0
(0) = [β̂re

0 , β̂
im
0 , x̂0]

T satisfies

infv∈∂B
∣

∣v−x̃0(t)
∣

∣ ≥ 2δ for t ≥ T . Since when t ≥ tb,
x̃0(t) will approach the real beam direction x monoton-

ically as time t increases, one possible T is given by

T = arg min
t∈[tb,∞]

∣

∣

∣

∣

∣

∣

∣

∣

[
∫ t

tb

f
(

ψ̃
0
(v),ψ

)

dv

]

3

∣

∣

∣

∣

− δ

∣

∣

∣

∣

, (53)

where [·]i obtains the i-th element of the vector.

• Let T0
∆
= 0 and Tm+1

∆
= min {ti : ti ≥ Tn + T, i ≥ 0}

for m ≥ 0. Then Tm+1 − Tm ∈ [T, T + a1] and

Tm = tñ(m) for some ñ(m) ↑ ∞, where ñ(0) = 0.

Let ψ̃
ñ(m)

(t) denote the solution of ODE (49) for t ∈
Im

∆
= [Tm, Tm+1] with ψ̃

ñ(m)
(Tm) = ψ̄(Tm), m ≥ 0.

Hence, we can obtain the following lemma:

Lemma 1. If sup
t∈Im

∣

∣x̄(t)− x̃ñ(m)(t)
∣

∣ ≤ δ for all m ≥ 0, then

x̂n ∈ I for all n ≥ 0.

Proof. See Appendix D

Step 3: We will derive the probability lower bound for

the condition in Lemma 1, which is also a lower bound for

P ( x̂n→x| x̂0∈B (x)).
We will derive the probability lower bound for the condition

in Lemma 1, which results in the following lemma:

Lemma 2. If (i) the initial point satisfies x̂0 ∈ B(x), (ii) an
is given by (26) with any α > 0, then there exist N0 ≥ 0 and

C > 0 such that

P (x̂n ∈ I, ∀n ≥ 0) ≥ 1− 6e
−C|s|2

α2σ2
0 . (54)

Proof. See Appendix E.

Finally, by applying Lemma 2 and Corollary 2.5 in [22],

we can obtain

P ( x̂n → x| x̂0 ∈ B) ≥ P (x̂n ∈ I, ∀n ≥ 0) (55)

≥ 1− 6e
−C|s|2

α2σ2
0 ,

which completes the proof of Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

When the step-size an is given by (26) with any α > 0
and N0 ≥ 0, Theorem 6.6.1 [19, Section 6.6] has proposed

the sufficient conditions to prove the asymptotic normality

of
√
n (x̂n − x), i.e.,

√
n (x̂n − x)

d→ N (0,Σx). Under the

condition that ψ̂n → ψ, we will prove that our algorithm

satisfies its sufficient conditions and obtain the variance Σ as

follows:

1) Equation (29) should satisfy: (i) there exist an increasing

sequence of σ-fields {Fn : n ≥ 0} such that Fm ⊂Fn

for m<n, and (ii) the random noise ẑn is Fn-measurable

and independent of Fn−1.

As defined in Appendix A, there exist an increasing

sequence of σ-fields {Gn : n ≥ 0}, such that ẑn is

measurable with respect to Gn, i.e., E [ ẑn| Gn] = ẑn, and

is independent of Gn−1, i.e., E [ ẑn| Gn−1] = E [ẑn] = 0.

2) x̂n should converge to x almost surely as n → ∞.

Since ψ̂n → ψ is assumed, we have that x̂n converges

to x almost surely as n → ∞.

3) The stable condition:

In (20), f
(

ψ̂n−1,ψ
)

can be rewritten as follows:

f
(

ψ̂n−1,ψ
)

=C1

(

ψ̂n−1 −ψ
)

+





o(‖ψ̂n−1 −ψ‖2)
o(‖ψ̂n−1 −ψ‖2)
o(‖ψ̂n−1 −ψ‖2)



,

(56)

where C1 is given by

C1 =
∂f
(

ψ̂n−1,ψ
)

∂ψ̂
T

n−1

∣

∣

∣

∣

∣

∣

ψ̂n−1=ψ

= −





1 0 0
0 1 0
0 0 1



 . (57)

Then we get the stable condition that

A=C1 · α+
1

2
=−





α− 1
2 0 0

0 α− 1
2 0

0 0 α− 1
2



 ≺ 0, (58)

which results in α > 1
2 .

4) The constraints for the noise vector ẑn:

E

[

‖ẑn‖22
]

= tr(I(ψ̂n−1,Wn)
−1) < ∞, (59)

and

lim
v→∞

sup
n≥1

∫

‖ẑn‖2>v

‖ẑn‖22 p(ẑn)dẑn = 0. (60)

Let

B = lim
n → ∞
ψ̂n → ψ

E
[

ẑnẑ
T
n

]

(61)

(a)
= lim

n → ∞
ψ̂n → ψ

I(ψ̂n,Wn+1)
−1 = I(ψ,W∗)−1,

where step (a) is obtained from (31).
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Then, from Theorem 6.6.1 [19, Section 6.6], we have

√

n+N0

(

ψ̂n −ψ
)

d→ N (0,Σ) ,

where

Σ = α2 ·
∫ ∞

0

eAvBeA
Hvdv

=
α2

2α− 1
I(ψ,W∗)−1.

(62)

Due to that limn→∞
√

(n+N0)/n = 1, we have

√
n
(

ψ̂n −ψ
)

→ √
n ·
√

n+N0

n

(

ψ̂n −ψ
)

d→ N (0,Σ) ,

as n → ∞. Hence, we can obtain

√
n (x̂n − x)

d→ N
(

0, [Σ]3,3

)

. (63)

By adapting α in (62), we can obtain different [Σ]3,3, which

achieves the minimum value
[

I(ψ,W∗)−1
]

3,3
, i.e., the mini-

mum CRLB in (8), when α = 1.

By assuming α = 1, we conclude that

lim
n→∞

n E

[

(x̂n − x)2
∣

∣ψ̂n → ψ
]

=
[

I(ψ,W∗)−1
]

3,3
.

APPENDIX D

PROOF OF LEMMA 1

When m = 0, x̃ñ(0)(T0) = x̄(T0) = x̂0. There are two

symmetrical cases: (i) x̂0 < x and (ii) x̂0 > x.

Case 1 (x̂0 < x): We will first prove that x̄(t) ∈ I =
(

x− |x− x̂b| − δ, x+ |x− x̂b|+ δ
)

for all t ∈ I0.

If
∣

∣x̄(t)− x̃ñ(0)(t)
∣

∣ ≤ δ for all t ∈ I0, then we have

− δ ≤ x̄(t)− x̃ñ(0)(t) ≤ δ. (64)

What’s more, due to the definition of x̂b in (51), we get

x̂b ≤ x, x̃ñ(0)(t)− x̂b ≥ 0, x− x̃ñ(0)(t) ≥ 0, (65)

for all t ∈ I0. By using (64) and (65), we can obtain

x̄(t)− (x− |x− x̂b| − δ) (66)

= x̄(t)− (x̂b − δ)

=
[

x̄(t)− x̃ñ(0)(t)
]

+
[

x̃ñ(0)(t)− x̂b

]

+ δ ≥ 0,

and

(x+ |x− x̂b|+ δ)− x̄(t) (67)

= (2x− x̂b + δ)− x̄(t)

= (x− x̂b) + [x− x̄(t)] + δ

= (x− x̂b) +
[

x− x̃ñ(0)(t)
]

+
[

x̃ñ(0)(t)− x̄(t)
]

+ δ

≥ 0,

which result in x̄(t) ∈ I for all t ∈ I0.

Then, we consider the initial value x̄(T1) for the next time

interval I1. With the T given by (53), we have

x− x̂b ≥ x̃ñ(0)(T1)− x̂b ≥ x̃ñ(0)(T )− x̂b ≥ δ. (68)

By using (64), (65) and (68), we get

x̄(T1)− (x− |x− x̂b|) (69)

= x̄(T1)− x̂b

=
[

x̄(T1)− x̃ñ(0)(T1)
]

+
[

x̃ñ(0)(T1)− x̂b

]

≥ 0,

and

(x+ |x− x̂b|)− x̄(T1) (70)

= (2x− x̂b)− x̄(T1)

= (x− x̂b) + [x− x̄(T1)]

= (x− x̂b) +
[

x− x̃ñ(0)(T1)
]

+
[

x̃ñ(0)(T1)− x̄(T1)
]

≥ 0,

which result in x̄(T1) ∈
[

x− |x− x̂b|, x+ |x− x̂b|
]

.

Case 2 (x̂0 > x): Owing to symmetric property, we can use

the same method as (66), (67), (69) and (70) to obtain that

x̄(t) ∈ I for all t ∈ I0 and x̄(T1) ∈
[

x−|x−x̂b|, x+|x−x̂b |
]

.

When m = 1, x̃ñ(1)(T1) = x̄(T1) ∈
[

x−|x− x̂b|, x+ |x−
x̂b|
]

. If x̄(T1) < x and
∣

∣x̄(t)− x̃ñ(1)(t)
∣

∣ ≤ δ, then for all t ∈
I1, we have x̄(T1) ≥ x̂b, x̃ñ(1)(t)− x̂b ≥ 0, x− x̃ñ(1)(t) ≥ 0,

and

x− x̂b ≥ x̃ñ(1)(T2)− x̂b ≥ x̃ñ(1)(T1 + T )− x̂b ≥ δ.

Similar to (66), (67), (69) and (70), we can get x̄(t) ∈
I for all t ∈ I1 and x̄(T2) ∈

[

x − |x − x̂b|, x + |x − x̂b|
]

,

which are also true for the case that x̄(T1) > x.

Hence, we can use the same method to prove the cases of

m ≥ 2, which finally yields x̄(t) ∈ I for all t ∈ Im and

m ≥ 0. Since x̄(tn) = x̂n for all n ≥ 0, we can obtain that

x̂n ∈ I for all n ≥ 0, which completes the proof.

APPENDIX E

PROOF OF LEMMA 2

The following lemmas are needed to prove Lemma 2:

Lemma 3. Given T by (53) and

nT
∆
= inf {i ∈ Z : tn+i ≥ tn + T } . (71)

If there exists a constant C > 0, which satisfies
∥

∥

∥
ψ̄(tn+m)− ψ̃n

(tn+m)
∥

∥

∥

2

≤ L

m
∑

i=1

an+i

∥

∥

∥
ψ̄(tn+i−1)− ψ̃

n
(tn+i−1)

∥

∥

∥

2
+ C,

(72)

for all n ≥ 0 and 1 ≤ m ≤ nT , then

sup
t∈[tn,tn+nT ]

∥

∥

∥
ψ̄(t)− ψ̃n

(t)
∥

∥

∥

2
≤ Cfan+1

2
+ CeL(T+a1),

(73)

where L and Cf are defined in (78) and (79) separately.

Proof. See Appendix F.

Lemma 4 (Lemma 4 [18]). If {Mi : i = 1, 2, . . .} satisfies

that: (i) Mi is Gaussian distributed with zero mean, and (ii)

Mi is a martingale in i, then

P

(

sup
0≤i≤k

|Mi| > η

)

≤ 2 exp

{

− η2

2Var [Mk]

}

, (74)



10

for any η > 0.

Lemma 5 (Lemma 5 [18]). If given a constant C > 0, then

G(v) =
1

v
exp

[

−C

v

]

, (75)

is increasing for all 0 < v < C.

Let ξ0
∆
= 0 and ξn

∆
=
∑n

m=1 amẑm, n ≥ 1, where ẑm is

given in (30). With (48) and (50), we have for tn+m, 1 ≤ m ≤
nT ,

ψ̄(tn+m) = ψ̄(tn) +

m
∑

i=1

an+if
(

ψ̄(tn+i−1),ψ
)

(76)

+ (ξn+m − ξn),

and

ψ̃
n
(tn+m) = ψ̃

n
(tn) +

∫ tn+m

tn

f
(

ψ̃
n
(v),ψ

)

dv (77)

= ψ̃
n
(tn) +

m
∑

i=1

an+if
(

ψ̃
n
(tn+i−1),ψ

)

+

∫ tn+m

tn

[

f
(

ψ̃
n
(v),ψ

)

− f
(

ψ̃
n
(v),ψ

)]

dv,

where v
∆
= max {tn : tn ≤ v, n ≥ 0} for v ≥ 0.

To bound
∫ tn+m

tn

[

f
(

ψ̃
n
(v),ψ

)

− f
(

ψ̃
n
(v),ψ

)]

dv on

the RHS of (77), we obtain the Lipschitz constant of function

f(v,ψ) considering the first varible v, given by

L
∆
= sup

v1 6=v2

‖f(v1,ψ)− f(v2,ψ)‖2
‖v1 − v2‖2

. (78)

Similar to (40), for any t ≥ tn, we can obtain that there exists

a constant 0 < Cf < ∞ such that
∥

∥

∥
f
(

ψ̃
n
(t),ψ

)
∥

∥

∥

2
≤ Cf . (79)

Hence, we have
∥

∥

∥

∥

∫ tn+m

tn

[

f
(

ψ̃
n
(v),ψ

)

− f
(

ψ̃
n
(v),ψ

)]

dv

∥

∥

∥

∥

2

≤
∫ tn+m

tn

∥

∥

∥
f
(

ψ̃
n
(v),ψ

)

− f
(

ψ̃
n
(v),ψ

)∥

∥

∥

2
dv

(a)

≤
∫ tn+m

tn

L
∥

∥

∥
ψ̃

n
(v)− ψ̃n

(v)
∥

∥

∥

2
dv

(b)

≤
∫ tn+m

tn

L

∥

∥

∥

∥

∫ v

v

f
(

ψ̃
n
(s),ψ

)

ds

∥

∥

∥

∥

2

dv

≤
∫ tn+m

tn

∫ v

v

L
∥

∥

∥
f
(

ψ̃
n
(s),ψ

)∥

∥

∥

2
dsdv

(c)

≤
∫ tn+m

tn

∫ v

v

CfLdsdv =

∫ tn+m

tn

CfL(v − v)dv

=

m
∑

i=1

∫ tn+i

tn+i−1

CfL(v − tn+i−1)dv

=

m
∑

i=1

CfL(tn+i − tn+i−1)
2

2
=

CfL

2

m
∑

i=1

a2n+i,

(80)

where step (a) is due to (78), step (b) is due to the definition

in (50), and step (c) is due to (79). Then, by subtracting

ψ̃
n
(tn+m) in (77) from ψ̄(tn+m) in (76) and taking norms,

the following inequality can be obtained from (78) and (80)

for n ≥ 0, 1 ≤ m ≤ nT :

∥

∥

∥
ψ̄(tn+m)− ψ̃n

(tn+m)
∥

∥

∥

2

≤L

m
∑

i=1

an+i

∥

∥

∥
ψ̄(tn+i−1)− ψ̃

n
(tn+i−1)

∥

∥

∥

2

+
CfL

2

m
∑

i=1

a2n+i +
∥

∥ξn+m − ξn
∥

∥

2

≤L

m
∑

i=1

an+i

∥

∥

∥
ψ̄(tn+i−1)− ψ̃

n
(tn+i−1)

∥

∥

∥

2

+
CfL

2

nT
∑

i=1

a2n+i + sup
1≤m≤nT

∥

∥ξn+m − ξn
∥

∥

2
.

(81)

Applying Lemma 3 to (81) and letting

C =
CfL

2

nT
∑

i=1

a2n+i + sup
1≤m≤nT

∥

∥ξn+m − ξn
∥

∥

2
,

yields

sup
t∈[tn,tn+nT ]

∥

∥

∥
ψ̄(t)− ψ̃n

(t)
∥

∥

∥

2

≤ Ce

{

CfL

2

[

b(n)− b(n+ nT )
]

+ sup
1≤m≤nT

∥

∥ξn+m − ξn
∥

∥

2

}

+
Cfan+1

2
,

(82)

where Ce
∆
= eL(T+a1), and b(n)

∆
=
∑

i>n a
2
i . Letting n =

ñ(m) in (82), we have n+nT = ñ(m+1) due to the definition

of Tm+1 = tñ(m+1) in Step 2 of Appendix B and

sup
t∈Im

∥

∥

∥
ψ̄(t)− ψ̃ñ(m)

(t)
∥

∥

∥

2

≤ Ce

{

CfL

2

[

b(ñ(m))− b(ñ(m+ 1))
]

+ sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2

}

+
Cfañ(m)+1

2
.

(83)

Suppose that the step size {an : n > 0} satisfies

Ce

CfL

2

[

b(ñ(m))− b(ñ(m+ 1))
]

+
Cfañ(m)+1

2
<

δ

2
, (84)

for m ≥ 0.
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Given sup
t∈Im

∣

∣x̄(t)− x̃ñ(m)(t)
∣

∣>δ, we can obtain from (83)

and (84) that

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2

≥ 1

Ce

(

sup
t∈Im

∥

∥

∥
ψ̄(t)− ψ̃ñ(m)

(t)
∥

∥

∥

2
− CfL

2

[

b(ñ(m))

−b(ñ(m+ 1))
]

− Cfañ(m)+1

2

)

>
1

Ce

(

sup
t∈Im

∣

∣

∣
x̄(t)− x̃ñ(m)(t)

∣

∣

∣
− δ

2

)

>
δ

2Ce

.

Then, we get

P

(

sup
t∈Im

∣

∣

∣
x̄(t)− x̃ñ(m)(t)

∣

∣

∣
> δ

∣

∣

∣

∣

sup
t∈Ii

∣

∣

∣
x̄(t)− x̃ñ(i)(t)

∣

∣

∣
≤ δ, 0 ≤ i < m

)

≤P

(

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2
>

δ

2Ce

∣

∣

∣

∣

∣

sup
t∈Ii

∣

∣

∣
x̄(t)− x̃ñ(i)(t)

∣

∣

∣
≤ δ, 0 ≤ i < m

)

(a)
= P

(

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2
>

δ

2Ce

)

,

(85)

where step (a) is due to the independence of noise, i.e., ξk −
ξñ(m), ñ(m) ≤ k ≤ ñ(m+1) are independent of x̂n, 0 ≤ n ≤
ñ(m).

The lower bound of the probability that the sequence {x̂n :
n ≥ 0} remains in the invariant set I is given by

P (x̂n ∈ I, ∀n ≥ 0)

(a)

≥P

(

sup
t∈Im

∣

∣

∣
x̄(t)− x̃ñ(m)(t)

∣

∣

∣
≤ δ, ∀m ≥ 0

)

(b)

≥1−
∑

m≥0

P

(

sup
t∈Im

∣

∣

∣
x̄(t)− x̃ñ(m)(t)

∣

∣

∣
> δ

∣

∣

∣

∣

(86)

sup
t∈Ii

∣

∣

∣
x̄(t)− x̃ñ(i)(t)

∣

∣

∣
≤ δ, 0 ≤ i < m

)

(c)

≥1−
∑

m≥0

P

(

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2
>

δ

2Ce

)

,

where step (a) is due to Lemma 1, step (b) is due to Lemma

4.2 in [22], and step (c) is due to (85). Let ‖·‖∞ denote the

max-norm, i.e., ‖u‖∞ = maxl |[u]l|. Note that for u ∈ R
D,

‖u‖2 ≤
√
D ‖u‖∞. Hence we have

P

(

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

2
>

δ

2Ce

)

≤ P

(

sup
ñ(m)≤k≤ñ(m+1)

∥

∥

∥
ξk − ξñ(m)

∥

∥

∥

∞
>

δ

2
√
3Ce

)

(87)

= P

(

sup
ñ(m)≤k≤ñ(m+1)

max
1≤l≤3

∣

∣

∣

[

ξk
]

l
−
[

ξñ(m)

]

l

∣

∣

∣
>

δ

2
√
3Ce

)

= P

(

max
1≤l≤3

sup
ñ(m)≤k≤ñ(m+1)

∣

∣

∣

[

ξk
]

l
−
[

ξñ(m)

]

l

∣

∣

∣
>

δ

2
√
3Ce

)

≤
3
∑

l=1

P

(

sup
ñ(m)≤k≤ñ(m+1)

∣

∣

∣

[

ξk
]

l
−
[

ξñ(m)

]

l

∣

∣

∣
>

δ

2
√
3Ce

)

.

With the increasing σ-fields {Gn :n≥0} defined in Appendix

A, we have for n ≥ 0,

1) ξn=
∑n

m=1 amẑm ∼ N (0,
∑n

m=1 a
2
mI(ψ̂m−1,Wm)−1),

2) ξn is Gn-measurable, i.e., E [ξn| Gn] = ξn,

3) E

[

‖ξn‖22
]

=
∑n

m=1 a
2
m tr

(

I(ψ̂m−1,Wm)−1
)

< ∞,

4) E [ξn| Gm] = ξm for all 0 ≤ m < n.

Therefore, [ξn]l , l = 1, 2, 3 is a Gaussian martingale with

respect to Gn, and satisfies

Var
[[

ξn+m

]

l
−
[

ξn
]

l

]

=

n+m
∑

i=n+1

a2i

[

I(ψ̂i−1,Wi)
−1
]

l,l

≤
n+m
∑

i=n+1

a2i
CIσ

2
0

|s|2 (88)

=
CIσ

2
0

|s|2
[

b(n)− b(n+m)
]

,

where CI
∆
= maxl maxi≥1

|s|2
σ2
0

[

I(ψ̂i−1,Wi)
−1
]

l,l
. Let η =

δ

2
√
3Ce

, Mi =
[

ξñ(m)+i

]

l
−
[

ξñ(m)

]

l
, l = 1, 2, 3 and k =

ñ(m+ 1)− ñ(m) in Lemma 4, then from (87) and (88), we

can obtain

P

(

sup
ñ(m)≤k≤ñ(m+1)

∣

∣

∣

[

ξk
]

l
−
[

ξñ(m)

]

l

∣

∣

∣
>

δ

2
√
3Ce

)

≤ 2 exp







− δ2

24C2
e Var

[

[

ξñ(m)+i

]

l
−
[

ξñ(m)

]

l

]







(89)

≤ 2 exp

{

− δ2|s|2
24CIC2

e

[

b(ñ(m))− b(ñ(m+ 1))
]

σ2
0

}

.

Combining (86), (87) and (89), we have

P (x̂n ∈ I, ∀n ≥ 0) (90)

≥ 1− 6
∑

m≥0

exp

{

− δ2|s|2
24CIC2

e

[

b(ñ(m))− b(ñ(m+ 1))
]

σ2
0

}

.

To use Lemma 5, we assume that the step-size an satisfies

b(0) =
∑

i>0

a2i ≤ δ2|s|2
24CIC2

eσ
2
0

. (91)
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Then, from Lemma 5, we can obtain

exp

{

− δ2|s|2

24CIC2
e

[

b(ñ(m))−b(ñ(m+1))
]

σ2
0

}

b(ñ(m))− b(ñ(m+ 1))

≤
exp

{

− δ2|s|2
24CIC2

eb(0)σ
2
0

}

b(0)
,

for b(ñ(m)) − b(ñ(m + 1)) < b(ñ(m)) ≤ b(0). Hence, we

have

∑

m≥0

exp

{

− δ2|s|2
24CIC2

e

[

b(ñ(m))− b(ñ(m+ 1))
]

σ2
0

}

(92)

≤
∑

m≥0

[b(ñ(m))− b(ñ(m+ 1))] ·
exp

{

− δ2|s|2
24CIC2

eb(0)σ
2
0

}

b(0)

=b(0) ·
exp

{

− δ2|s|2
24CIC2

eb(0)σ
2
0

}

b(0)
= exp

{

− δ2|s|2
24CIC2

e b(0)σ
2
0

}

.

As Ce = eL(T+a1), b(0) =
∑

i>0 a
2
i , and an, T, L are given

by (26), (53), (78) separately, we can obtain

δ2|s|2
24CIC2

e b(0)σ
2
0

=
δ2|s|2

24CIe
2L(T+ α

N0+1 )σ2
0

∑

i≥1

α2

(i+N0)2

=
δ2

∑

i≥1

24CIe
2L(T+ α

N0+1
)

(i+N0)2

· |s|2
α2σ2

0

.

(93)

In (93), 0 < δ < infv∈∂B |v − x̂b|, (84) and (91) should be

satisfied, where a sufficiently large N0 ≥ 0 can make both

(84) and (91) true.

To ensures that x̂0 + a1

[

f
(

ψ̂0,ψ
)]

3
does not exceed the

mainlobe B(x), i.e., the first step-size a1 satisfies

∣

∣

∣
x̂0 + a1

[

f
(

ψ̂0,ψ
)]

3
− x
∣

∣

∣
<

λ

Md
,

we can obtain the maximum α as follows

αmax =
(N0 + 1)

(

λ
Md

− |x− x̂0|
)

∣

∣

∣

[

f
(

ψ̂0,ψ
)]

3

∣

∣

∣

.

Hence, from (93), we have

δ2|s|2
24CIC2

e b(0)σ
2
0

·α
2σ2

0

|s|2 ≥ δ2

∑

i≥1

24CIe
2L(T+

αmax
N0+1

)

(i+N0)2

∆
= C. (94)

Combining (90), (92) and (94), yields

P (x̂n ∈ I, ∀n ≥ 0) ≥ 1− 6e
−C|s|2

α2σ2
0 ,

which completes the proof.

APPENDIX F

PROOF OF LEMMA 3

Apply the discrete Gronwall inequality [24], leading (72) to
∥

∥

∥
ψ̄(tn+m)− ψ̃n

(tn+m)
∥

∥

∥

2
≤ CeL

∑m
i=1 an+i . (95)

Since 1 ≤ m ≤ nT and nT = inf {i ∈ Z : tn+i ≥ tn + T },

we get

m
∑

i=1

an+i = tn+m − tn ≤ T + an+nT
≤ T + a1. (96)

By combining (95) and (96), we have
∥

∥

∥
ψ̄(tn+m)− ψ̃n

(tn+m)
∥

∥

∥

2
≤ CeL(T+a1). (97)

For ∀t ∈ [tn+m−1, tn+m], 1 ≤ m ≤ nT , from (48), we have

ψ̄(t) = ψ̄(tn+m−1) +
(t− tn+m−1)

[

ψ̄(tn+m)− ψ̄(tn+m−1)
]

an+m

= γψ̄(tn+m−1) + (1− γ)ψ̄(tn+m),

where γ = tn+m−t

an+m
∈ [0, 1]. Then, we can get (98), where step

(a) is according to the definition of ψ̃
n
(t) in (50), step (b)

is due to (97), step (c) is obtained from (79), and step (d) is

obtained by using γ = tn+m−t

an+m
.

Therefore, from (98), we can obtain

sup
t∈[tn,tn+nT ]

∥

∥

∥
ψ̄(t)− ψ̃n

(t)
∥

∥

∥

2
≤ Cfan+1

2
+ CeL(T+a1),

which completes the proof.
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∥

∥

∥
ψ̄(t)− ψ̃n

(t)
∥

∥

∥

2
(98)

=
∥

∥

∥
γ
(

ψ̄(tn+m−1)− ψ̃
n
(t)
)

+ (1− γ)
(

ψ̄(tn+m)− ψ̃n
(t)
)∥

∥

∥

2

(a)
=

∥

∥

∥

∥

∥

γ

[

ψ̄(tn+m−1)− ψ̃
n
(tn+m−1)−

∫ t

tn+m−1

f
(

ψ̃
n
(s),ψ

)

ds

]

+ (1− γ)

[

ψ̄(tn+m)− ψ̃n
(tn+m)−

∫ t

tn+m

f
(

ψ̃
n
(s),ψ

)

ds

]∥

∥

∥

∥

∥

2

≤ γ

∥

∥

∥

∥

∥

∫ t

tn+m−1

f
(

ψ̃
n
(s),ψ

)

ds

∥

∥

∥

∥

∥

2

+ (1− γ)

∥

∥

∥

∥

∥

∫ t

tn+m

f
(

ψ̃
n
(s),ψ

)

ds

∥

∥

∥

∥

∥

2

+ γ
∥

∥

∥
ψ̄(tn+m−1)− ψ̃

n
(tn+m−1)

∥

∥

∥

2

+ (1 − γ)
∥

∥

∥
ψ̄(tn+m)− ψ̃n

(tn+m)
∥

∥

∥

2

(b)

≤ γ

∫ t

tn+m−1

∥

∥

∥
f
(

ψ̃
n
(s),ψ

)
∥

∥

∥

2
ds+ (1− γ)

∫ tn+m

t

∥

∥

∥
f
(

ψ̃
n
(s),ψ

)
∥

∥

∥

2
ds+ CeL(T+a1)

(c)

≤ Cfγ(t− tn+m−1) + Cf (1− γ)(tn+m − t) + CeL(T+a1)

(d)

≤ 2Cfan+mγ(1− γ) + CeL(T+a1) ≤ Cfan+m

2
+ CeL(T+a1)

≤ sup
1≤m≤nT

Cfan+m

2
+ CeL(T+a1) =

Cfan+1

2
+ CeL(T+a1).
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