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ABSTRACT

Tensor factorization with hard and/or soft constraints has

played an important role in signal processing and data anal-

ysis. However, existing algorithms for constrained tensor

factorization have two drawbacks: (i) they require matrix-

inversion; and (ii) they cannot (or at least is very difficult to)

handle structured regularizations. We propose a new tensor

factorization algorithm that circumvents these drawbacks.

The proposed method is built upon alternating optimization,

and each subproblem is solved by a primal-dual splitting al-

gorithm, yielding an efficient and flexible algorithmic frame-

work to constrained tensor factorization. The advantages of

the proposed method over a state-of-the-art constrained tensor

factorization algorithm, called AO-ADMM, are demonstrated

on regularized nonnegative tensor factorization.

Index Terms— alternating optimization, constrained ten-

sor factorization, nonconvex optimization, proximal splitting

1. INTRODUCTION

Tensor factorization techniques have been extensively studied

and applied not only to signal processing and machine learn-

ing problems, including signal analysis and blind source sep-

aration [1], dimensionality reduction and learning latent vari-

able models [2, 3], but also to scientific problems in chemo-

metrics [4] and neuroscience [5]. Recent comprehensive re-

views on tensor factorization can be found in [6, 7]

In the so-called canonical polyadic decomposition (CPD)

model, also known as the parallel factor analysis (PARAFAC)

model [8, 9], a tensor is decomposed into a sum of the lowest

possible number of rank-1 tensors, where a rank-one ten-

sor consists of an outer product of vectors. Although CPD

is essentially unique under relatively mild conditions [10],

hard and/or soft constraints on factors, such as nonnegativity,

sparsity, smoothness and so on, are very useful for restoring

identifiability, improving estimation accuracy, ensuring inter-

pretability of the results, and fixing ill-posedness [7]. On the

other hand, although there exist a bunch of tensor factoriza-

tion algorithms, most of them are designed for unconstrained
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cases or customized for handling a specific constraint, as

pointed out in [11].

Very recently, a tensor factorization algorithm that can

easily and naturally incorporate various types of constraints

has been proposed [11]. This method is based on the alternat-

ing optimization, i.e., updating each variable (factor matrix)

by solving the corresponding subproblem in a cyclic fashion,

which is the standard approach adopted in many other ten-

sor factorization algorithms. What is different is how to solve

each subproblem: the method adopts the alternating direction

method of multipliers (ADMM) [12–14]. ADMM can effi-

ciently solve nonsmooth convex optimization problems with

the help of proximal splitting techniques [15]. Thereby, this

method, which the authors named AO-ADMM, deals with in-

volved subproblems that have no closed-form solutions.

However, there are two things to be improved. One is

that AO-ADMM requires matrix-inversion at each iteration

of ADMM. The authors of [11] suggest to alleviate this com-

putational difficulty by Cholesky decomposition and back-

substitution, but it is still a bottleneck. The other is that a class

of structured regularization, i.e., the composition of a simple

regularization function and a linear operator, cannot be (or at

least is very difficult to be) used as a soft constraint. Repre-

sentative examples include the overlapping group lasso [16]

and the total variation [17], which would be useful in many

applications, as the lasso and the quadratic variation having

been commonly used [18–20]. Note that these drawbacks are

common to other constrained tensor factorization algorithms.

To circumvent these drawbacks, we propose a new al-

gorithmic framework for constrained tensor factorization.

The proposed method is built upon alternating optimiza-

tion as well as AO-ADMM, but the essential difference is

that each subproblem is solved by a primal-dual splitting

algorithm [21, 22]. It can solve nonsmooth convex optimiza-

tion problems involving linear operators without inversion

and has been applied to signal and image processing prob-

lems, e.g., [23–28]. Thus, incorporating it into alternating

optimization yields a more efficient and flexible algorithm

for constrained tensor factorization than AO-ADMM. The

advantages of the proposed method are demonstrated on reg-

ularized nonnegative tensor factorization, where aside from

its efficiency, we empirically show that our method achieves

better factorization in terms of mean squared error.
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2. PRELIMINARIES

2.1. Canonical Polyadic Decomposition (CPD)

For brevity, we focus on third-order tensors in this paper

but everything naturally generalizes to higher-order ten-

sors. We denote a tensor by bold calligraphic letters like

X ∈ R
N1×N2×N3 , a matrix by bold capital letters like

X ∈ R
N1×N2 , and a vector by bold letters like x ∈ R

N .

We denote the Khatri-Rao product (column-wise Kro-

necker product) of X and Y with the same number of

columns (i.e.. M2 = N2) by X ⊙ Y ∈ R
M1N1×N2 , and

the tensor product (outer product) of x ∈ R
N and y ∈ R

M

by x ⊚ y ∈ R
N×M . Note that the tensor product of three

vectors yields a rank-1 third-order tensor. The mode-d matri-

cization of X is a matrix of size
∏

Ni6=d × Nd, denoted by

X(d). Each row of X(d) is a vector obtained by fixing all the

indices of X except the d-th one, and the matrix is formed by

stacking these row vectors by traversing the rest of the indices

from 3 back to 1.

CPD of X is given by

X =

R∑

r=1

⊚
3
d=1f

(r)
d , (1)

where f
(r)
d ∈ R

Nd (d = 1, 2, 3, r = 1, . . . , R) are the factors

ofX , andR > 0 is the rank of X that is the minimum number

of rank-1 tensors required to represent X as their sum. Note

that a predetermined 0 < R̃ ≤ mind{Nd} is used in practice

instead of the true tensor rank R since computing R in CPD

is NP-hard [29]. We denote the above relation by

X = [Fd]
3
d=1, (2)

where Fd := (f
(1)
d · · · f

(R)
d ) ∈ R

Nd×R is the factor matrix of

the d-th mode. With the help of this notation, we can express

CPD in a matricized form:

X(d) = (⊙i6=dFi)F
⊤
d . (3)

2.2. Primal-Dual Splitting Algorithm

Let Γ0(R
N ) be the set of all proper lower semicontinuous

convex functions on R
N . Consider convex optimization prob-

lems of the form:

min
x∈RN

f(x) + g(x) + h(Lx), (4)

where f, g ∈ Γ0(R
N ) (f is β-Lipschitz differentiable with

β > 0), h ∈ Γ0(R
K), and L : RN → R

K is a linear operator.

Also, let us introduce the notion of the proximity operator of

index γ > 0 of f ∈ Γ0(R
N ) as follows:

proxγf : RN → R
N : x 7→ argmin

y

f(y)+
1

2γ
‖y−x‖2. (5)

A primal-dual splitting (PDS) algorithm [21] solves

Prob. (4) by the following iterative procedure: for any

x(0) ∈ R
N , y(0) ∈ R

K , and γ1, γ2 > 0 satisfying γ1(
β
2 +

γ2‖L
∗L‖) < 1 (L∗ is the adjoint operator of L, and ‖ · ‖

denotes the operator norm), iterate

⌊
x(n+1) := proxγ1g

(x(n) − γ1(∇f(x
(n)) + L∗(y(n)))),

y(n+1) := proxγ2h∗(y(n) + γ2L(2x
(n+1) − x(n))),

(6)

where h∗ is the convex conjugate function of h, and γ1 and

γ2 can be seen as the stepsizes. We note that the proximity

operator of h∗ is available via that of h as

proxγh∗(x) = x− γ proxγ−1h(γ
−1x) (7)

(see, e.g., [30, Theorem 14.3(ii)]). Under some mild condi-

tion on g, h, and L, the sequence (x(n))k∈N converges to an

optimal solution of Prob. (4).

3. PROPOSED METHOD

3.1. Problem Formulation

Consider the following data observation model:

Y =M(X + E), (8)

where Y is an observed data stored as a tensor possibly with

missing data, X is a true tensor data, M is a self-adjoint

idempotent linear operator that specifies the observed entries

in Y , i.e., zeroing out the entries whose indices correspond to

missing data, and E is an additive noise.

Then, wth the notation in (2), we formulate constrained

tensor factorization as a generic optimization problem:

min
F1,F2,F3

1

2
‖Y −M([Fd]

3
d=1)‖

2
F +

3∑

d=1

hd(Ld(F
⊤
d ))

s.t. F⊤
d ∈ Cd (d = 1, 2, 3), (9)

where ‖ · ‖F is the Frobenius norm of a tensor, hd ◦ Ld is

a regularization function (soft constraint) for the d-th factor

matrix consisting of a (possibly nonsmooth) convex function

hd and a linear operator Ld, and Cd is a closed convex set

representing a hard constraint on the d-th factor matrix. Here

we assume that the proximity operator of hd and the metric

projection1 onto Cd are efficiently computable.

This formulation covers various existing constrained ten-

sor factorization problems. A typical example would be non-

negative tensor factorization [31, 32], which is recovered by

setting hd := 0 and Cd := R
Nd×R
+ (R+ denotes the set

1The metric projection onto a closed convex set C is given by

PC : RN → R
N : x 7→ argmin

y∈C

‖y − x‖2.



of all nonnegative real numbers). Another example is ℓ1-

regularized tensor factorization [18, 19] promoting the spar-

sity of factors, which corresponds to penalizing factors by the

ℓ1 norm, i.e., hd := ‖ · ‖1. These constraints have shown to

be very useful for the reasons mentioned in Sec. 1.

3.2. Optimization

Since Prob. (9) is nonconvex due to the multi-linearity of

CPD, it is very difficult to solve the problem directly. As a

remedy, the alternating optimization is commonly used: each

factor matrix Fd is updated in a cyclic fashion. Specifically,

for each Fd, we solve the following subproblem:

min
Fd

1

2
‖Y(d) −M((⊙i6=dF̃i)F

⊤
d )‖

2
F + hd(Ld(F

⊤
d ))

s.t. F⊤
d ∈ Cd, (10)

where we use the matricized form in (3), and F̃i (i 6= d) are

the fixed factor matrices except the mode d.

Now we can see that Prob (10) is convex but is still a tough

problem because of the nonsmoothness. Thus, we propose

to approximately solve the problem by few iterations of the

primal-dual splittihg algorithm in (6). To this end, first, we in-

troduce the indicator function of Cd, defined by ιCd
(x) := 0,

if x ∈ C; ιCd
(x) :=∞, otherwise. It should be noted that the

proximity operator of the indicator function of Cd is equiv-

alent to the metric projection onto Cd. Second, by letting

W := ⊙i6=dF̃i and F := F⊤
d , Prob (10) can be rewritten as

min
F

1

2
‖Y(d) −M(WF)‖2F + ιCd

(F) + hd(Ld(F)).

Let us define

f(F) :=
1

2
‖Y(d) −M(WF)‖2F ,

g(F) := ιCd
(F),

h(G) := hd(G) and L := Ld.

Since the squared loss term is β-Lipschitz differentiable with

β = ‖W⊤M∗(M(W))‖ = ‖W⊤M(W)‖

≤ ‖W⊤‖‖M‖‖W‖ = ‖W⊤W‖ (∵ ‖M‖ = 1),

and the proximity operators of ιCd
and hd are available from

the assumptions onCd and hd, we can derive an iterative algo-

rithm for solving Prob. (10) based on the primal-dual splitting

algorithm in (6) as follows: for anyF(0), G(0), and γ1, γ2 > 0
satisfying

γ1

(
‖W⊤W‖

2
+ γ2‖L

∗
dLd‖

)
< 1, (11)

set A := W⊤M(W) and B := W⊤Y(d), and iterate


F(n+1) := PCd
(F(n) − γ1(AF(n) −B+ L∗d(G

(n)))),

G(n) ← G(n) + γ2Ld(2F
(n+1) − F(n)),

G(n+1) := G(n) − γ2 prox 1
γ2

hd
(G

(n)

γ2
).

(12)

Remark 1 (Comparison with AO-ADMM [11]). Clearly,

there is no matrix inversion in (12). Specifically, whereas

AO-ADMM requires the inversion of A+ I (see Algorithm 1

in [11]), our algorithm only needs to compute the multipli-

cation of A and F(n). The authors of [11] suggest to use

Cholesky decomposition and back-substitution for efficiently

computing this inversion, but we will see in the next section

that our algorithm outperforms AO-ADMM in terms of CPU

time. We also remark that at the update of G, our algorithm

just computes the proximity operator of hd, i.e., the linear

operator Ld is decoupled. This is another big difference from

AO-ADMM: it requires to compute the proximity operator of

hd◦Ld, which does not have a closed-form solution in general

even if that of hd does. Indeed, such a situation arises in the

following cases: the overlapping group lasso, i.e., hd := ‖·‖1
and Ld is an operator that replicates overlapping variables,

and the total variation, i.e., hd := ‖ · ‖1 and Ld is a discrete

difference operator.

It should be noted that AO-ADMM can be used not only

for the squared loss function (the first term in (10)) but also

other loss functions such as ℓ1 norm and Kullback-Leibler

divergence. Although we only describe the squared loss case

in this paper, our approach can also handle other cases by

letting f(F) := 0, h(G1,G2) := l(G1) + hd(G2) and L :=
(MW,Ld) in (4), where l is a loss function.

Finally, by incorporating (12) into alternating optimiza-

tion, we obtain a new algorithm for solving the generic con-

strained tensor factorization problem formulated in (9). The

whole algorithm is shown in Algorithm 1.

Algorithm 1: Proposed method for solving (9) (AO-

PDS)

input : F
(0)
d , G

(0)
d , Y(d) and ‖L∗dLd‖ (d = 1, 2, 3)

1 while A stopping criterion is not satisfied do

2 for d = 1 to 3 do

3 W(k) := ⊙i6=dF
(k)
i ;

4 A(k) := W(k)⊤M(W(k));

5 B(k) := W(k)⊤Y(d);

6 Compute γ1 and γ2 by (13) and (14);

7 Update F
(k)
d and G

(k)
d using (12) initialized

with the previous F
(k)
d and G

(k)
d ;

8 F
(k+1)
d ← F

(k)
d ;

9 G
(k+1)
d ← G

(k)
d ;

10 k ← k + 1;

output: F
(k)
d (d = 1, 2, 3)

Remark 2 (Iteration number and stepsizes of (12)). As in

the case of AO-ADMM, each factor matrix Fd and dual vari-

able Gd are updated in a cyclic fashion in Alg. 1, so that we

can expect that after a number of iterations, these variables
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Fig. 1. Evolution of MSE (logarithmic scale) versus time in seconds on the regularized nonnegative tensor factorization: R = 5
(left), R = 10 (center) and R = 15 (right).

obtained in the previous iteration of (12) are good initial vari-

ables to the current iteration. This means that few iterations of

(12) would be enough for updating Fd and Gd, which keeps

our method computationally efficient. Indeed, the numerical

experiments in the next section show that a very few number

of iterations (3 to 7) are sufficient for empirical convergence

with reasonable precision.

In (12), the stepsizes γ1, γ2 > 0 are set to

γ1 := 0.99
2

trace(W⊤W)
, (13)

γ2 :=
1

γ1‖L∗dLd‖
−

trace(W⊤W)

2‖L∗dLd‖
, (14)

respectively. This setting satisfies the inequality in (11) since

the trace of W⊤W is an upper bound of ‖W⊤W‖, and it can

efficiently be computed at each iteration of Alg. 1. Note that

‖L∗dLd‖ can be estimated in advance, and once determined, it

can be used for every iteration because Ld does not change.

4. NUMERICAL EXPERIMENTS

We examined our method on regularized nonnegative tensor

factorization. Our method was compared with AO-ADMM

[11], where we used the MATLAB code distributed by the

authors of [11]. All experiments were performed using MAT-

LAB (R2017a), on a Windows 8.1 (64bit) laptop computer

with an Intel Core i7 2.6 GHz processor and 16 GB of RAM.

We tested these algorithms on synthetic data. Specifi-

cally, synthetic true tensor data were generated as follows:

for N1 = N2 = N3 = 100 and R = 5, 10 or 15, the true

factor matrices, denoted by Ftrue
d (d = 1, 2, 3), are obtained

by drawing their elements from an i.i.d. uniform distribution

on the interval (0, 1), and then 80% of the elements of Ftrue
1

are randomly set to 0, i.e., only Ftrue
1 is sparse. The observed

tensor data Y is then obtained by (8), where the elements of

E are drawn from an i.i.d. Gaussian distribution with stan-

dard deviation 0.1. In the experiments, we did not consider

missing data, i.e.,M equals to an identity operator.

For soft constraints (regularization), we adopted the ℓ1
norm for F1 and the squared Frobenius norm for F2 and

F3, where their hyperparameters were set to 5 and 2, re-

spectively. The nonnnegativity constraint is also imposed

on each factor matrix. Then we measured the evolution of

mean squared error (MSE) versus time in seconds on the

regularized nonnegative tensor factorization problem solved

by AO-ADMM and our algorithm, where MSE is defined by
1

R(N1+N2+N3)

∑3
d=1 ‖F

true
d − Fd‖

2
F . Note that the above

hyperparameters were hand-optimized in the MSE sense.

For the parameters of AO-ADMM, we used the settings

recommended by the authors of [11]. The stopping crite-

rion of the outer loop of each algorithm is set to |MSEk −
MSEk−1| < 1.0 × 10−5 (k is the number of iterations of the

outer loop). Note that this criterion can only be used for syn-

thetic data since it uses MSE. For practical situations, one

may use the value of the objective function in (9) as a stop-

ping criterion.

The results are shown in Figure 1, where n = 3, 5, 7 are

the number of the inner loop of each algorithm (ADMM or

primal-dual splitting). One can see that our method (AO-

PDS) is about three times faster than AO-ADMM. In addi-

tion, the best MSE values of AO-PDS are 0.142, 0.122 and

0.117; and those of AO-ADMM are 0.142, 0.133 and 0.127,

respectively forR = 5, 10, 15, i.e., our method results in more

accurate factorization in terms of MSE for R = 10, 15. As

expected, we observe that very small number of outer itera-

tions are enough for empirical convergence of AO-PDS. This

would be thanks to the warm-start nature of alternating opti-

mization, as in the case of AO-ADMM.

5. CONCLUSION

We have proposed an efficient and flexible tensor factorization

algorithm based on alternating optimization combined with

primal-dual splitting. Our algorithm has two advantages over

AO-ADMM, a state-of-the-art tensor factorization algorithm,

as follows: (i) it is free from matrix-inversion; and (ii) it can

efficiently handle structured regularizations. Our experimen-

tal results on regularized nonnegative tensor factorization not

only support our claim that the proposed method is more com-

putationally efficient than AO-ADMM but also revealed that

the proposed method achieves better factorization than AO-

ADMM in the sense of MSE.
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