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ABSTRACT
Multi-segment reconstruction (MSR) problem consists of re-
covering a signal from noisy segments with unknown posi-
tions of the observation windows. One example arises in
DNA sequence assembly, which is typically solved by match-
ing short reads to form longer sequences. Instead of trying
to locate the segment within the sequence through pair-wise
matching, we propose a new approach that uses shift-invariant
features to estimate both the underlying signal and the distri-
bution of the positions of the segments. Using the invariant
features, we formulate the problem as a constrained nonlinear
least-squares. The non-convexity of the problem leads to its
sensitivity to the initialization. However, with clean data, we
show empirically that for longer segment lengths, random ini-
tialization achieves exact recovery. Furthermore, we compare
the performance of our approach to the results of expectation
maximization and demonstrate that the new approach is ro-
bust to noise and computationally more efficient.

Index Terms— multi-segment reconstruction, invariant
features, non-convex optimization, DNA sequence assembly,
cryo-EM

1. INTRODUCTION

We consider the following observation model,

yk =Mskx+ εk, k ∈ {1, 2, ...,K} (1)

where yk ∈ Rm and x ∈ Rd, m ≤ d, correspond to the k-th
observation and the underlying signal respectively. Ms de-
notes a cyclic masking operator that captures m consecutive
entries of the signal starting from location s. In other words,
Ms : Rd → Rm and (Msx) [n] = x[n + smod d]. For the
sake of brief notations, we define x[n+s]d := x[n+smod d]
from now on. We also assume s ∈ {0, 1, ..., d − 1} to be
a random variable drawn from a general distribution with p
as its probability mass function, i.e. P{s = sk} = p[sk].
Furthermore, the randomly located segment of the signal is
contaminated by additive white Gaussian noise εk with zero
mean and variance σ2Im. Figure 1 further illustrates the ob-
servation model (1).

Our goal here is to recover x from noisy partial obser-
vations {yk}Kk=1. This problem is linked to multi-reference
alignment (MRA) [1] in which estimation of the signal from

Fig. 1. (a) The original signal, (b) several noisy circular seg-
ments of the signal

noisy and random circularly-shifted versions of itself is tar-
geted [2, 3]. While in MRA the whole signal takes part in
each observation, in MSR shorter segments of the signal con-
tribute to the observations. Similar problems to MSR ap-
pear in DNA sequencing [4, 5], common superstring prob-
lem [6, 7, 8], puzzle solving [9], image registration, super-
resolution imaging [10] and cryo-EM [11, 12], to name a few.

MSR is originally motivated by DNA sequencing, short
common super string (SCS) problem and cryo-EM. While in
DNA sequencing, assembling the whole sequence from short-
length reads is addressed, in SCS finding the shortest string
containing a set of strings is the ultimate target. Also, our
signal model is relevant to the cryo-EM 3D reconstruction in
the sense that the Fourier transform of a 2D projection image
is a partial observation of the 3D volume.

In this paper, we have assumed fixed segment length,
however the same approach can be easily extended to random-
length segments. In addition, we assume that the probability
mass function of the positions of the segments is no longer
uniform unlike [4], thus further generalizing the problem.
Next, we estimate some features of the signal from the obser-
vations and then try to recover the signal from those features.
The advantages of pursuing this approach compared to us-
ing the observations directly are in 1) we estimate x and p
directly, thus circumventing the estimation of Msk which
is most of the times impossible due to high level of noise
[13]-[14], 2) creating features that are shift-invariant, i.e. if x
and p are shifted the same amount, the constructed features
will not change, 3) instead of using probabilistic models such
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as maximum-likelihood which are computationally expen-
sive [13, 15, 16], our approach goes through the observations
once to create invariant features similar to [2, 11, 17], 4) the
signal recovery is more robust to noise as the features can be
estimated accurately when sufficient number of observations
is available.

We formulate the problem of recovering x and p as a
weighted non-linear least-squares problem. We seek to find
a signal that matches the higher order statistics (up to third
order correlation) derived from the observations. In addition,
due to the structure of the constructed features, the formu-
lated optimization problem can be viewed as a tensor decom-
position problem [18]-[19]. Our simulations reveal that this
problem has spurious local minima apart from the global min-
ima, hence additional care should be given to the initialization
scheme. Note that x and p are only determined up to a global
cyclic shift. We can clearly see that as the length of the seg-
ment increases, the convergence of the recovery problem to
the accurate solution becomes less sensitive to random ini-
tialization. Additionally, we observe that it is impossible to
recover from partial observations of the signal that are shorter
than a threshold, similar to [4]. We also apply our approach to
some small scale form of gene sequencing problem. Relying
on the results we hope we can further extend our problem to
larger scales such that it finds real applications in DNA se-
quence assembly. MATLAB implementations of our paper
are provided in https://github.com/MonaZI/MSR.

The organization of the paper is as follows. In Section 2
we describe our method. In Section 3 we present the results
of our approach and finally conclude the paper in Section 4.

2. METHODS

We use the first, second, and third order correlation of the sig-
nal as the shift-invariant features. Let µ, C and T be the pop-
ulation expectations corresponding to these features obtained
from clean observations as in (2).

µx,p[n] =

d−1∑
s=0

x[n+ s]d p[s], (2)

Cx,p[n1, n2] =

d−1∑
s=0

x[n1 + s]d x[n2 + s]d p[s],

Tx,p[n1, n2, n3] =

d−1∑
s=0

x[n1 + s]d x[n2 + s]d x[n3 + s]d p[s].

We use the observations yk to construct empirical estimates
of invariants in (2) as in (3). [2] verifies that the relative error
in the estimation of the second and third-order correlation de-
cays as 1√

K
and the sample complexity for the estimation of

T and C is O(σ6) and O(σ4) respectively.

µ̂[n] =
1

K

K∑
k=1

yk[n]→ µx,p[n], (3)

Ĉ[n1, n2] =
1

K

K∑
k=1

yk[n1]yk[n2]− σ2δ(n1, n2)→ Cx,p[n1, n2]

T̂ [n1, n2, n3] =
1

K

K∑
k=1

yk[n1]yk[n2]yk[n3]− σ2 (µ̂[n1]δ(n2, n3)

+µ̂[n2]δ(n1, n3) + µ̂[n3]δ(n1, n2))→ Tx,p[n1, n2, n3]

Thus, MSR formulation for non-uniform p is described in (4)
where ‖.‖F marks the Frobenius norm,

min
x,p

λT ‖T̂ − Tx,p‖2F + λC‖Ĉ − Cx,p‖2F + λµ‖µ̂− µx,p‖22

s.t. ∀i ∈ {0, . . . , d− 1}, p[i] ≥ 0,

d−1∑
i=0

p[i] = 1. (4)

In case of uniform distribution for s, p[s = i] = 1
d , ∀ i ∈

{0, 1, ..., d − 1}, the dimension of the invariant features will
further reduce due to existing symmetries. As a result, similar
derivations to (2) simplify as,

µ̃x =
1

d

d−1∑
m=0

x [m] , C̃x [n] =
1

d

d−1∑
m=0

x[m+ n]dx[m],

T̃x [n1, n2] =
1

d

d−1∑
m=0

x[n1 +m]dx[n2 +m]dx[m]. (5)

The MSR formulation for uniform p is,

min
x
λT ‖T̂ − T̃x‖2F + λC‖Ĉ − C̃x‖2F + λµ‖µ̂− µ̃x‖22 (6)

where we reuse T̂ , Ĉ and µ̂ notations to also refer to the em-
pirical estimates of T̃x, C̃x and µ̃x respectively. Although (6)
is a special case of (4) there are a few differences that makes
the former interesting to study separately. First, the only un-
known we seek to recover in (6) is the signal x unlike (4) in
which both x and p are undetermined. Also, (6) is an un-
constrained optimization problem, while (4) requires p to be
a valid discrete probability mass function. Besides, the com-
plexity of (6) is further reduced due to lower dimensions of
the invariant features.

Note that the objective functions in both problems corre-
spond to the weighted squared Frobenius distance between
the ground truth features of x and their estimated values.
λT , λC and λµ are the weights we give to the importance of
matching the third, second and first order correlation terms
with their estimated values. For example, as λT increases, x
and p are set in a way that further match T̂ . In Section 3, we
also examine the case with λT = 0 to see the possibility of



accurate recovery of x and p by merely using statistics up to
second order.

Note the objective function in (4) which is a 6-th order
polynomial in x and 2-nd order polynomial in p. Thus, al-
though the constraints form a convex set, the overall optimiza-
tion problem is non-convex. There are couple of challenges
with non-convex optimization, 1) existence of local minima
and 2) existence of saddle points which might slow down the
first-order optimization approaches. To avoid the second pit-
fall, we exploit second order methods such as trust-region
and sequential quadratic programming (SQP) [20]-[21], im-
plemented in MATLAB optimization toolbox.

In addition to the local non-convex optimization ap-
proach, we use global optimization with polynomials [22]
to reconstruct the signal from the invariant moments. More
specifically, the objective function is a sum of squares (SOS)
polynomial. The Lasserre hierarchy of relaxations is able
to solve the MSR problem for small d with m above a d-
dependent threshold1. However, it becomes computationally
expensive and requires too much memory for d > 9.

2.1. Analysis

Here we briefly analyze our problem for the clean case with
σ = 0. It is worth mentioning that as the simultaneous shifts
of x and p result in the same features, there are at least d
global minima. When the segment length is small, the num-
ber of algebraically independent equations provided by the in-
variant features in (2) is not enough to uniquely determine x
and p. Therefore, random initialization with local non-convex
algorithms are able to achieve the global minima, but fail to
recover the true signal and the corresponding segment loca-
tion pmf.

Let us denote m̃(d) as the minimum m for which the
number of algebraically independent equations provided by
the invariant features reaches the number of unknowns. m̃(d)
varies across different problem settings as,

m̃(d) = min
m∈N

m

s.t.


m3

6 +m2 + 11
6 m+ 1 ≥ 2d non-unif. p, λT 6= 0

m2

2 + 3
2m+ 1 ≥ 2d non-unif. p, λT = 0

m2

2 + 3
2m+ 1 ≥ d unif. p, λT 6= 0

(7)
We provide numerical results to verify our analysis of

m̃(d). In addition, we can extend our approach to contain
moments up to s > 3 and count the number of algebraically
independent equations in order to determine the minimum re-
quired segment length.

In bispectrum inversion for 1D MRA [2], it is observed
that with random initialization, local non-convex algorithm is
able to exactly recover the signal in the noiseless case. How-
ever, for MSR, m > m̃(d) is not sufficient to guarantee the

1This will be further discussed in the sequel.

exact recovery from random initialization. In some cases, gra-
dient methods can get stuck in the local minima and therefore
require good initialization. Similar phenomenon is observed
in [23] for reconstructing heterogeneous signals from invari-
ant moments.

3. NUMERICAL RESULTS

In our simulations we generate x and p randomly. Also, we
adopt 105 noisy observations to estimate the shift-invariant
features as in (3). Also, in (4) and (6) we assume λµ = λC =
λT = 1 unless otherwise stated. To assess our methodology
we use several performance metrics, 1) mean-squared error
defined as MSE = ‖x − x̂‖2, 2) the probability of accurate
recovery, i.e. prec(th) = P{MSE ≤ th}, 3) the median of
the final value of the objective function denoted by f which
is an indicator of whether the globally optimal solution is ob-
tained. For our evaluations in this section, we set th = 10−3.
To derive prec(th) and f , we solve the optimization prob-
lem using trust-region and SQP starting from a random initial
point for 50 trials. Note that when we state accurate recov-
ery is achieved, we mean an accurate estimation of x and p
is recovered up to a global cyclic shift and the corresponding
MSE is below th. In what follows, we discuss the two main
results of our experiments.
• The impact of the segment length on the possibility of

getting to the global minima: We investigate the changes of
prec(th) and f with respect tom and d for four different cases
when σ = 0 as illustrated in Fig. 2, a) uniform p and λT 6= 0,
b) non-uniform p and λT = 0, c) non-uniform p and λT 6= 0,
d) non-uniform p, λT 6= 0 and x discretized in value, i.e.
x[n] ∈ {0, 1, 2, 3}, ∀n ∈ {0, 1, ..., d− 1}.

An immediate observation from all four subplots in Fig.
2 suggests that the larger the m, the higher prec(th). Com-
paring Fig. 2(a) with Fig. 2(b) verifies that for uniform p,
the minimum length of segments required for accurate recov-
ery is smaller compared to non-uniform p and λT = 0 case.
Also, for non-uniform p when λT 6= 0, m̃(d) is smaller com-
pared to the case of λT = 0, as also predicted by (7). This
clearly proposes that using the 3-rd order correlation provides
more information about the signal and thus accurate signal
recovery can be obtained for smaller m. Additionally, Fig.
2(d),(h) shows how our proposed method can be extended to
problems in which the signal is discretized in value (similar to
a DNA sequence assembly problem) and again how accurate
recovery is achievable when the length of the reads surpass a
certain threshold.

Regarding the landscape of the problem what we observe
is, 1) for small values of m the global minimum is not unique
(up to cyclic shifts) and reaching global minima does not nec-
essarily guarantee accurate reconstruction and, 2) the problem
has local minima. The evidence for the first statement is that
for some trials, although the value of the objective function
at the optimal point is reported very small (∼ 10−10), x̂ and



Fig. 2. prec(th) and f for a,e) uniform p and λT 6= 0 in (6), b,f) non-uniform p and λT = 0 in (4), c,g) non-uniform p and
λT 6= 0 in (4), d,h) x has discrete values, non-uniform p and λT 6= 0 in (4). The red solid lines mark m̃(d), the red-dashed
lines convey the upper bound on m, i.e. m ≤ d and the solid magenta line locate the minimum m for each d for which prec(th)
becomes one. For (a,e) and (b,f) the magenta line is fit to d

3
4 and

√
2d

3
4 respectively.

Fig. 3. The comparison between the results of our approach
and EM in terms of MSE and computation time for different
noise levels and fixed d = 45 and m = 25.

p̂, do not match their true values, as displayed in Fig. 2. The
d − m region for which this happens is the blue-colored re-
gion on top of the yellow strip in Fig. 2(e)-(h) which almost
maps to m < m̃(d) region. Additionally, we noticed that
in some trials, when reaching the local minimum is reported
with relatively larger values of the objective function at the
optimal point, the solution does not match the original x and
p. This also marks the existence of local minima in addition
to global minima. The corresponding d − m region for this

case is marked by the yellow shaded regions in Fig. 2(e)-(h).

• Robustness of the recovery to noise and comparison
with expectation-maximization (EM) method: Figure 3 com-
pares the performance of our approach with the results ob-
tained from expectation maximization [24] for different noise
levels. It can be inferred that in high noise regimes the per-
formance of both our approach and EM degrades. On the
other hand, our approach is computationally more efficient
and scales linearly with the number of samples, so it can be
used as a good initialization for EM.

4. CONCLUSION

In this paper, we proposed a new approach for recovering a
signal from a large number of randomly observed noisy seg-
ments. The random locations of the observation windows are
unknown. Instead of trying to recover the locations for each
segment through matching, we used shift invariant features
to estimate the underlying signal and the distribution of the
windows. The invariant features approach has low computa-
tional complexity for large sample size compared to alterna-
tive methods, such as EM. The signal is reconstructed by solv-
ing a constrained nonlinear least-squares problem. Due to the
non-convex nature of the problem, the solution depends on the
initialization. It was shown that for clean data, as the length of
the segment increases, random initialization can achieve ac-
curate recovery. We also demonstrated that the new method is
robust to noise and efficient in terms of computational time.
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