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ABSTRACT

Techniques for multi-lingual and cross-lingual speech recognition
can help in low resource scenarios, to bootstrap systems and enable
analysis of new languages and domains. End-to-end approaches, in
particular sequence-based techniques, are attractive because of their
simplicity and elegance. While it is possible to integrate traditional
multi-lingual bottleneck feature extractors as front-ends, we show
that end-to-end multi-lingual training of sequence models is effective
on context independent models trained using Connectionist Tempo-
ral Classification (CTC) loss. We show that our model improves
performance on Babel languages by over 6% absolute in terms of
word/phoneme error rate when compared to mono-lingual systems
built in the same setting for these languages. We also show that the
trained model can be adapted cross-lingually to an unseen language
using just 25% of the target data. We show that training on multiple
languages is important for very low resource cross-lingual target sce-
narios, but not for multi-lingual testing scenarios. Here, it appears
beneficial to include large well prepared datasets.

Index Terms— multi-lingual speech recognition, cross-lingual
adaptation, connectionist temporal classification, feature representa-
tion learning

1. INTRODUCTION

State-of-the-art speech recognition systems with human-like perfor-
mance [1, 2] are trained on hundreds of hours of well-annotated
speech. Since annotation is an expensive and time-consuming task,
similar performance is typically unattainable on low resource lan-
guages. Multi-lingual or cross-lingual techniques allow transfer of
models or features from well-trained scenarios to those where large
amounts of training data may not be available, cannot be transcribed,
or are otherwise hard to come by [3, 4].

The standard approach is to train a context dependent Hidden
Markov Model based Deep Neural Network acoustic model with a
“bottleneck” layer using a frame based criterion on a large multi-
lingual corpus [5, 6, 7]. The network up to the bottleneck layer can
be used as a language-independent feature extractor while adapting
to a new language. Generating such a model requires the prepara-
tion of frame level segmentation in each language, which is usually
achieved by training separate mono-lingual systems first. This is
a cumbersome multi-step process. Moreover, if the speaking style,
acoustic quality, or linguistic properties of the recordings are very
different across a set of languages, the segmentations may be incon-
sistent across languages and thus sub-optimal for generating features
in a new language.

On the other hand, end-to-end training approaches which di-
rectly model context independent phones are elegant, and greatly
facilitate speech recognition training. Most do not require an ex-
plicit alignment of transcriptions with the training data, and there

are typically fewer hyper-parameters to tune. We show that sequence
training in multi-lingual settings can create feature extractors, which
can directly be ported to new languages using a linear transformation
(on very limited data), or re-trained on more data, opening a door to
end-to-end language universal speech recognition.

2. RELATED WORK AND BABEL DATASET

Some of the early works in multi-lingual and cross-lingual speech
recognition involved the use of language independent features like
articulatory features [8] to train HMM based systems. Authors in [9]
used subspace Gaussian mixture model to map phonemes of differ-
ent languages together. Authors in [10] introduce the use of a shared
phone set to build HMM based language independent acoustic mod-
els and show the adaptation of pre-existing models towards a new
language.
With the on-set of deep learning the focus of the models shifted to
learning features across languages which can be mapped to the same
space [3, 11]. Authors in [12] looked at unsupervised pretraining on
different languages for a cross lingual recognition. The dominant ar-
chitecture for multi-lingual or cross-lingual speech recognition has

Fig. 1. Multi-lingual CTC model following the “shared hidden
layer” approach for LSTM layers.
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been the so-called “shared hidden layer” model, in which data is
passed through a series of shared feed-forward layers, before being
separated into multiple language-specific softmax layers, which are
trained using cross-entropy [13, 5, 14]. This architecture can also be
used as a “bottleneck” feature extractor, from which “language in-
dependent” features are extracted, on top of which a target-language
acoustic model can be built. Authors in [15] showed that these multi-
lingual models can be adapted to the specific language to improve
performance further. The work by [5, 16] presented bottleneck fea-
tures for multi-lingual systems where they showed feature porting
is possible and gave competitive results when compared to systems
with mono-lingual features. Other approaches [17, 18] constructed
a shared language independent phone set, which could then also be
adapted to the target language. Our proposed model is inspired by
the former approach which tries to learn latent features by sharing
hidden layers across languages.

Connectionist Temporal Classification (CTC, [19]) lends itself
to low-resource multi-lingual experiments, because systems built on
CTC tend to be significantly easier to train than those that have
been trained using hidden Markov models [20, 21]. [22] shows that
multi-lingual CTC systems with shared phones can improve perfor-
mance in a limited data setting. As per our knowledge there has not
been any prior work that have looked into learning “bottleneck” like
features for a CTC based model and seen how it performs multi-
lingually and cross-lingually with adaptation.

For this paper we use several languages from IARPA’s Babel1

project to test our model. These are mostly telephony (8kHz) con-
versational speech data in a low resource language. These were
accompanied by a lexicon and dictionary in Extended Speech As-
sessment Methods Phonetic Alphabet (X-SAMPA) format. Table 1
summarizes the amount of training data in hours along with the num-
ber of phonemes (including the CTC blank symbol) present for the
languages we used in our experiments on the “Full Language Pack”
(FLP) condition.

Table 1. Overview of the FLP Babel Corpora used in this work.
Subset Language # Phones + ∅ Training Data

Turkish 50 79 hrs
MLing Haitian 40 67 hrs

Kazakh 70 39 hrs
Mongolian 61 46 hrs
Amharic 67 43 hrs

Bab300 Tamil 41 69 hrs
Tagalog 48 85 hrs
Pashto 54 78 hrs

For Kurmanji 45 42 hrs
testing Swahili 40 44 hrs

3. MULTI-LINGUAL CTC MODEL

A model trained with CTC loss is a sequence based model which
automatically learns alignment between input and output by intro-
ducing an additional label called the blank symbol (∅), which corre-
sponds to ‘no output’ prediction. Given a sequence of acoustic fea-

1This work used releases IARPA-babel105b-v0.4, IARPA-babel201b-
v0.2b, IARPA-babel401b-v2.0b, IARPA-babel302b-v1.0a (these 4 languages
will be called the “MLing” set), and IARPA-babel106b-v0.2g, IARPA-
babel307b-v1.0b, IARPA-babel204b-v1.1b, IARPA-babel104b-v0.4bY
(these 4 languages will be called the “BAB300” set), and IARPA-babel202b-
v1.0d and IARPA-babel205b-v1.0 for testing.

tures X = (x1, . . . ,xn) with the label sequence z = (z1, . . . , zu),
the model tries to maximize the likelihood of all possible CTC paths
p = (p1, . . . ,pn) which lead to the correct label sequence z after
reduction. A reduced CTC path is obtained by grouping the dupli-
cates and removing the ∅ (e.g. B(AA∅AABBC) = AABC).

P (z|X) =
∑

p∈CTC Path(z)

P (p|X)

Like in [20] we use this loss along with stacked Bidirectional LSTM
layers to encode the acoustic information and make frame-wise pre-
dictions.
In our CTC multi-lingual model, we share the bidirectional LSTM
encoding layer till the final layer and project the learned embedding
layer to the phones of the respective target languages. The intuition
behind this model is that training on more than one language will
help in better regularization of weights and learning a better repre-
sentation of features, as it will be trained on more data. We hypothe-
size that the final phoneme discrimination can be learned in a linear
projection of the last layer. Figure 1 shows the schematic diagram of
our multi-lingual model. Mathematically this can be written as,

X = {XL1 ∪XL2 ∪XL3 . . .XLn} XLi = (x1
Li, . . . , x

n
Li)

e = EncoderBiLSTM (X) e ∈ Rn×2∗hdim

P (p|X) =


softmax(WL1e+ bL1) if X ∈ XL1

softmax(WL2e+ bL2) if X ∈ XL2

. . .

softmax(WLne+ bLn) if X ∈ XLn

Unlike [5], we do not have any bottleneck layer, and the whole
model is sequence trained based on CTC loss. Note that here we
recognize a sequence of phonemes which is a much harder problem.
Traditional HMM/DNN systems perform frame-wise recognition of
individual phonemes, usually relying on alignments that have been
generated by mono-lingual models. This can be considered a much
simpler task than the recognition of a phone sequence.

4. EXPERIMENTS AND OBSERVATIONS

4.1. Multi-lingual CTC model

To align with project goals, we chose to perform experiments on a
set of four languages which are the closest/ have maximum phone
overlap with Kurmanji – Kazakh, Turkish, Mongolian and Haitian.
We used a 6-layer bidirectional LSTM network with 360 cells in
each direction, which performed best on average across the major-
ity of Babel languages in a systematic search experiment. Table 2
shows the results. For consistency, we used absolutely identical set-
tings across all languages, and did not perform any language-specific
tuning, other than choosing the lowest perplexity language model be-
tween 3-gram and 4-gram models for WFST-based decoding. Tech-
niques such as blank scaling and applying a softmax temperature can
often improve results significantly, but we did not apply any of them
here for consistency.

In our multi-lingual experiments, we use the same 6-layer Bi-
LSTM network with 360 cells (per direction) in each layer as our
shared encoded representation2. Again, this setup performed best
on average on a larger set of languages. Multi-lingual training on

2The code to train the multi-lingual model will be released as part of
EESEN [20].
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Table 2. Word (% WER) and phoneme error rate (% PER) for each of the test languages, on the Babel conversational development test sets.

Model Kazakh Turkish Haitian Mongolian
WER PER WER PER WER PER WER PER

Mono-lingual 55.9 40.9 53.1 36.2 49.0 36.9 58.2 45.2
Multi-lingual (MLing) 53.2 36.5 52.8 34.4 47.8 34.9 55.9 41.1

MLing & FineTuning (FT) 50.6 35.1 49.0 32.2 46.6 33.2 53.4 39.6
MLing + SWBD 52.3 36.6 51.3 33.0 45.8 33.9 54.5 40.2

MLing + SWBD & FT 48.2 33.5 48.7 31.9 44.3 31.9 51.5 37.8

the “MLing” set (the four languages shown in Table 2) improves
WER by 1.7% (absolute) on average, while keeping the LSTM lay-
ers shared across all languages. If we fine-tune the entire model to-
wards each language specifically, performance improves further, by
4.4% on average over the baseline. If we roughly double the amount
of training data by adding the Switchboard 300h training set to the
“MLing” training data, performance improves yet again, for both the
universal (MLing+SBWD) and language-specific (MLing+SWBD
& FT) case. Overall, WER and PER improve by about 6% abso-
lute (>10% relative), which is in line with other results reported on
comparable tasks discussed in section 2.

As expected, reductions in the error rates tend to be higher for
the lower resource languages, like Kazakh and Mongolian.

4.2. Data Selection

Given that adding a seemingly unrelated, but high resource language
improved the performance of the model on four low resource lan-
guages, we further studied the impact of varying the source(s) of the
extra data. Specifically, we replaced the 300 h Switchboard corpus
with four more unrelated Babel languages, “BAB300” composed of
Tamil, Amharic, Pashto, and Tagalog. The results on the test data
are summarized in Table 3. We can see that adding Switchboard
data outperforms adding more unrelated Babel languages.

Table 3. Word error rate (% WER) on the test languages when
switching the SWBD data with 300 hrs equivalent of Babel.

Model Kazakh Turkish Haitian Mongolian
MLing + BAB300 57.5 52.0 47.8 56.7
MLing + SWBD 52.3 51.3 45.8 54.5

While our main goal here has been the creation of a multi-lingual
recognizer, we verified that models that have been trained on a sin-
gle Babel language plus 300 h of Switchboard do not outperform
the fine-tuned MLing+SWBD system, while there is no clear pat-
tern on other languages. This indicates that it is generally beneficial
to train (sequence-based) multi-lingual systems on closely related
languages, and/or on large amounts of well-prepared but unrelated
mono-lingual data, but that adding a large number of languages may
in fact prevent the model from training well.

4.3. Representation Learning

In order to study to what extent the CTC sequence models have
learned useful bottleneck like discriminatory audio features that are
independent of the input language, we attempt to port a model to
an unseen language. We aim to use the trained model as a language-
independent feature extractor that can linearly separate any language
into a phoneme sequence. To do this, we replace the softmax layer

(or “layers” in the multi-lingual case) of a “donor” CTC model with
a single softmax, which we then train with varying amounts of data
from the target language, Kurmanji in our case. Figure 2 shows
how different “donor” models behave in this situation. In the cross-
lingual case, it becomes beneficial to train the LSTM layers with
as many different languages as possible (“MLing+BAB300” outper-
forms “MLing+SWBD” and “MLing”), while a single related lan-
guage (Turkish) outperforms adaptation on a larger amount of data
from an unrelated language (SWBD). There is a large gap between
mono-lingual systems and multi-lingual systems. Improvements be-
come smaller once training is performed on 4 h (10%) of data or
more, but even then the re-estimation of the softmax layer (with
ca. 32k parameters) benefits from more data.

Fig. 2. Cross-lingual training of CTC softmax layer only on top of
different “donor” models.

It thus seems that multi-lingual systems do indeed learn a
portable, language independent representation, which is useful when
porting to a new language, while the sheer amount of data is less
beneficial.

4.4. Cross-lingual Explorations

Figure 4 shows that for both related and unrelated languages, a multi-
lingual system surpasses the mono-lingual baseline once about 25%
of the original data has been seen. The behavior of retraining (“full
network adaptation”) seems independent of the original trained lan-
guages.

To further investigate how multi-lingual models can be used in
cross-lingual settings, and with varying amounts of training data, we

3



(a) Adaptation of softmax layer only for Kurmanji and Swahili
targets. Kurmanji performs well, because the language is similar to
some training languages.

(b) Adaptation of entire network (re-training) to target languages.
This outperforms softmax adaptation (on the left) as soon as 2-4 h of data
become available.

Fig. 3. Cross-lingual training of Kurmanji and Swahili systems.

compare “softmax” adaptation and full network adaptation (retrain-
ing) on Kurmanji and Swahili, two languages which we did not see
in training. We use the (MLing + SWBD) and (MLing + BAB300)
“donor” models. Figure 3 shows that for small amounts of adap-
tation data, and a target language that is related to the pre-trained
languages (Kurmanji), “softmax adaptation” is competitive, and an
initialization with many languages is beneficial.

Fig. 4. PER on different amounts of cross-lingual data using a full
network end-to-end adaptation (retraining).

When the entire network can be retrained (“full network adapta-
tion”, shown on the right side of Figure 3), there is very little differ-
ence between the “donor” systems’ performance.

5. CONCLUSION

In this paper, we demonstrate that it is possible to train multi-lingual
and cross-lingual acoustic models directly on phone sequences,

rather than frame-level state labels. Unlike multi-lingual bottleneck
features, these CTC models do not require the generation of state
alignments, which facilitates their use.

In multi-lingual settings, it seems beneficial to train on related
languages only, or on large amounts of clean data; there is no ben-
efit simply from training on many languages. It is thus possible to
combine e.g. Switchboard and Babel data.

In very low resource cross-lingual scenarios, it is possible to
adapt a model to a previously unseen language by re-training the
softmax layer only. CTC models can learn a language independent
representation at the input to the softmax layer. We find that train-
ing the models trained on related languages help, as does training
on many languages, rather than large amounts of data. As more and
more data is available, and the whole network can be retrained, and
the effect of the choice of language for the multi-lingual training
disappears.

As future work, we are investigating on decoding the CTC out-
put using a phoneme based neural language models trained on non-
parallel text, thereby facilitating us to do zero-resource speech recog-
nition.
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