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Abstract

Singing voice separation based on deep learning relies on the usage of time-frequency masking. In many cases the masking
process is not a learnable function or is not encapsulated into the deep learning optimization. Consequently, most of the
existing methods rely on a post processing step using the generalized Wiener filtering. This work proposes a method that
learns and optimizes (during training) a source-dependent mask and does not need the aforementioned post processing step.
We introduce a recurrent inference algorithm, a sparse transformation step to improve the mask generation process, and a
learned denoising filter. Obtained results show an increase of 0.49 dB for the signal to distortion ratio and 0.30 dB for the
signal to interference ratio, compared to previous state-of-the-art approaches for monaural singing voice separation.
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I. Introduction

The problem of music source separation has received a lot
attention in the fields of audio signal processing and deep
learning [1]. The most adopted solution is the estimation of a
time-varying and source-dependent filter, which is applied to
the mixture [2]. Performing the filtering operation is done by
treating audio signals as wide-sense stationary. This involves
transforming the mixture signal using the short-time Fourier
transform (STFT). Then, the source-dependent filtering
operation is applied to the complex-valued coefficients of
the mixture signal. More formally, let x be the time-domain
mixture signal vector of J sources. Y ∈ CM×N is the
complex-valued STFT representation of x, comprising of
M overlapping time frames and N frequency sub-bands.
The estimation of the j-th target source (Ŷj ∈ CM×N ) is
achieved through:

Ŷj = Y �Mj , (1)

where � is element-wise product and Mj ∈ RM×N≥0 is the
j-th source-dependent filter, henceforth denoted as mask.
In [2] was shown that a preferred way for estimating the
j-th source is to derive the mask through the generalized
Wiener filtering using α-power magnitude spectrograms as:

Mj =
|Ŷj |◦α∑
j

|Ŷj |◦α
, (2)

where, |· | and ◦ denote the entry-wise absolute and exponen-
tiation operators respectively, and α is an exponent chosen
based on the assumed distributions that the sources follow.
Finding α (and thus an optimal Mj for the source estimation
process [2]) is an open optimization problem [2, 3].

Deep learning methods for music source separation are
trained using synthetically created mixtures Y (adding sig-
nals Yj together, i.e., knowing the target decomposition).
They can be divided into two categories. In the first cate-
gory, the methods try to predict the mask directly from the
mixture magnitude spectrum [4] (i.e. f1 : |Y| →Mj). This
requires that an optimal Mj is given (e.g. all the non-linear
mixing parameters of the target source are known) during
training as a target. However, such information for the
Mj is unknown, and an approximation of Mj is computed
from the training data using Eq. (2) and empirically chosen
α values, under the hypothesis that the source magnitude
spectra are additive, which is not true for realistic audio
signals [2, 3]. This implies that such models are optimized
to predict non-optimal masks. The methods in the second
category try to estimate all sources from the mixture(i.e.
f2 : |Y| → |Ŷj |◦α ∀ j ∈ J) and then use these estimates
to compute a mask [5, 6, 7, 8, 9]. This approach is widely
adopted, since it is straightforward by employing denoising
autoencoders [10], with noise corresponding to the addition
of other sources. However, the masks are dependent on the
initial α-power magnitude estimates of the sources (|Ŷj |◦α),
and the mask computation is not a learned function. In-
stead, the mask computation uses a deterministic function
which takes as inputs the outcomes (|Ŷj |◦α∀j ∈ J) of deep
neural networks, e.g. as in [8].

An exception to the above are the works presented in [11]
and [12], where these methods jointly learned and optimized
the masking processes described by Eq. (1) and (2). In [11],
highway networks [13] were shown to be able to approximate
a masking process for monaural solo source separation and
in [12], a more robust alternative to [11] is presented. The
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approach in [12] uses a recurrent encoder-decoder with skip-
filtering connections, which allow a source-dependent mask
generation process, applicable to monaural singing voice
separation. However, the generated masks are not robust
against interferences from other music sources, thus requir-
ing a post-processing step using the generalized Wiener
filtering [12].

In this work we present a method for source separation
that learns to generate a source-dependent mask which
does not require the generalized Wiener filtering as a post-
processing step. To do so, we introduce a novel recurrent
inference algorithm inspired by [14] and a sparsifying trans-
form [15] for generating the mask Mj . The recurrent infer-
ence allows the proposed method to have a stochastic depth
of RNNs during the mask generation process, computing
hidden, latent representations which are presumably better
for generating the mask. The sparsifying transform is used
to approximate the mask using the output of the recurrent
inference. In this method the mask prediction is not based
on the above mentioned assumptions about the additivity
of the magnitude spectrogram of the sources, is part of an
optimization process, and is not based on a deterministic
function. Additionally, the method incorporates RNNs in-
stead of feed-forward or convolutional layers for the mask
prediction. This allows the method to exploit the memory
of the RNNs (compared to CNNs) and their efficiency for
modeling longer time dependencies of the input data. The
rest of the paper is organized as follows: Section II presents
the proposed method, followed by Section III which provides
information about the followed experimental procedure. Sec-
tion IV presents the obtained results from the experimental
procedure and Section V concludes this work.

II. Proposed Method

Our proposed method takes as an input the time domain
samples of the mixture, and outputs time domain samples
of the targeted source. The model consists of four parts.
The first part implements the analysis and pre-processing
of the input. The second part generates and applies a mask,
thus creating the first estimate of the magnitude spectro-
gram of the targeted source. The third part enhances this
estimate by learning and applying a denoising filter, and
the fourth part constructs the time domain samples of the
target source. We call the second part the “Masker” and the
third the “Denoiser”. We differentiate between the Masker
and the Denoiser because the Masker is optimized to pre-
dict a time-frequency mask, whereas the Denoiser enhances
the result obtained by time-frequency masking. We imple-
ment the Masker using a single layer bi-directional RNN
encoder (RNNenc), a single layer RNN decoder (RNNdec),
a feed-forward layer (FFN), and skip-filtering connections
between the magnitude spectrogram of the mixture and the
output of the FFN. We implement the Denoiser using one
FFN encoder (FFNenc), one FFN decoder (FFNdec), and

Figure 1: Illustration of our proposed method.

skip-filtering connections between the input to the Denoiser
and the output of the FFNdec. We jointly train the Masker
and the Denoiser using two criteria based on the generalized
Kullback-Leibler divergence (DKL), as it is shown in [3, 16]
to be a robust criterion for matching magnitude spectro-
grams. All RNNs are gated recurrent units (GRU). The
proposed method is illustrated in Figure 1.

i. Input preprocessing

Let x be the vector containing the time-domain samples of
a monaural mixture from J sources, sampled at 44.1kHz.
We compute the STFT of x from time frames of N = 2049
samples, segmented with Hamming window and a hop size
of 384 samples. Each time frame is zero-padded to N ′ =
4096. Subsequent to the STFT we retain only the positive
frequencies, corresponding to the first N = 2049 frequency
sub-bands. This yields the complex-valued time-frequency
representation of x, Y ∈ CM×N , and the corresponding
magnitude |Y| ∈ RM×N≥0 . We split |Y| in B = dM/T e
subsequences, with T being the length of the subsequence,
and d·e is the ceiling function. Each subsequence b overlaps
with the preceding one by an empirical factor of L × 2,
in order to use some context information for the encoding
stage. We use each subsequence b in |Y|, denoted as |Yin| as
an input to the skip-filtering connections (presented later).
Furthermore we produce a low-bandwidth version of |Y|,
which is used for encoding, by preserving only the first
F = 744 frequency sub-bands at each frame yielding |Ytr| ∈
RT×F≥0 |Ytr|. This operation retains information up to 8
kHz, in order to reduce the number of trainable parameters
but preserving the most relevant information of the singing
voice source.

ii. The Masker

RNN encoder We use |Ytr| as an input to the RNNenc.
The forward GRU of the RNNenc takes |Ytr| as an in-

put. The backward one takes as an input the |
←−
Ytr| =

[|ytrT |, . . . , |ytrt |, . . . , |ytr1 |], where |ytrt | ∈ RF≥0 is a vector
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in |Ytr| at time frame t, and ←− indicates the direction of

the sequence. The outputs from the Bi-GRU ht and
←−
h t are

updated at each time frame t using residual connections [17]
and then concatenated as

henct =
[
(ht + |ytrt |)T, (

←−
h t +

←−
|ytrt |)T

]T
. (3)

The output of the RNNenc for all t ∈ T is denoted as
Henc ∈ RT×(2×F ) and is followed by the context information
removal defined as:

H̃enc = [henc1+L
,henc2+L

, . . . ,hencT−L
], (4)

yielding H̃enc ∈ RT ′×(2×F ) for T ′ = T − (2× L). Residual
connections are used to ease the RNN training [17].
Recurrent inference and mask prediction Inspired
by recent optimization methods employing stochastic
depth [14], we propose a recurrent inference algorithm that
processes the latent variables of the RNNdec which affect
the mask generation. We use this algorithm in order to
employ a stochastic depth for the network parts responsible
for predicting the mask, increasing the performance of our
method. The recurrent inference is an iterative process and
consists in reevaluating the latent variables Hj

dec, produced
by the RNNdec, until a convergence criterion is reached, thus
avoiding the need to specify a fixed number of applications
of the RNNdec. The stopping criterion is a threshold on the
mean-squared-error (LMSE) between the consecutive esti-
mates of Hj

dec, with a LMSE threshold τterm. A maximum
number of iterations (iter) is used to avoid having infinite
iterations for convergence between the above mentioned
consecutive estimates. Hj

dec is used only for the singing

voice, i.e. j = 1. Let Gjdec be the source-dependent and
trainable function of the RNNdec. The recurrent inference
is performed using Algorithm 1.

Algorithm 1 Recurrent Inference

1: Sj
0 ← G

j
dec(H̃enc)

2: for i ∈ {1, . . . , iter} do
3: Hj

dec ← G
j
dec(S

j
i−1)

4: if LMSE(S
j
i−1,H

j
dec) < τterm then

5: Terminate the process

6: Sj
i ← Hj

dec

return Hj
dec

Hj
dec is then given to the FFN layer with shared weights

through time frames, in order to approximate the j-th source-
dependent mask as:

M̃j = ReLU(Hj
decWmask + bmask), (5)

where ReLU is the element-wise rectified linear unit func-
tion producing a sparse [15] approximation of the target

source mask M̃j ∈ RT
′×N
≥0 . The sparsification is performed

in order to improve the interference reduction of [12]. The

ReLU function can produce high positive values inducing
distortions to the audio signal. However, the reconstruction
loss (see Eq. (9)) will alleviate that. Wmask ∈ R(2×F )×N is
the weight matrix of the FFN comprising a dimensionality
expansion up to N , in order to recover the original dimen-
sionality of the data. bmask ∈ RN is the corresponding bias
term.
Skip filtering connections and first estimate of the
targeted source We obtain an estimate of the magnitude

spectrum of the target source |Ŷj
filt| ∈ RT

′×N
≥0 through the

skip-filtering connections as:

|Ŷj
filt| =|Ỹin| � M̃j , where (6)

|Yin| =[|yinL
|, · · · , |yinT−L

|]. (7)

iii. The Denoiser

The output of the Masker is likely to contain interferences
from other sources [12]. The Denoiser aims to learn a
denoising filter for enhancing the magnitude spectrogram
estimated by this masking procedure. This denoising filter
is implemented by an encoder-decoder architecture with the
FFNenc and FFNdec of Fig. 1. FFNenc and FFNdec have
shared weights through time frames. The final enhanced
magnitude spectrogram estimate of the target source |Ŷj |
is computed using

|Ŷj | = ReLU(ReLU(|Ŷj
filt|Wenc+benc)Wdec+bdec)�|Ŷj

filt|,
(8)

where Wenc ∈ RN×bN/2c and Wdec ∈ RbN/2c×N are the
weight matrices of the FFNenc and FFNdec, with the corre-
sponding biases benc ∈ RbN/2c, bdec ∈ RN , respectively. b·c
denotes the floor function.

iv. Training details and post-processing

We train our method to minimize the objective consisting
of a reconstruction and a regularization part as:

L = DKL(|Yj | || |Ŷj |) + λrecDKL(|Yj | || |Ŷj
filt|)

+λmask|diag{Wmask}|1 + λdec||Wdec||22,
(9)

where |Yj | is the magnitude spectrogram of the true source,
diag{·} denotes the elements on the main diagonal of a
matrix, | · |1, and || · ||22 are the `1 vector norm and the
squared matrix L2 norm respectively, and λmask, and λdec

are scalars. For λrec the following condition applies:

λrec =


1, if DKL(|Yj | || |Ŷj

filt|) ≥ τrec

and DKL(|Yj | || |Ŷj |) ≥ τmin

0, otherwise

, (10)

where τrec and τmin are hyper-parameters penalizing
the mask generation process, allowing a collaborative
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minimization of the overall objective. The usage of
λrecDKL(|Yj | || |Ŷj

filt|) will ensure that Mj can be used to
initially estimate the target source, which is then improved
by employing the Denoiser and DKL(|Yj | || |Ŷj |). The
penalization of the elements in the main diagonal of Wmask

will ensure that the generated mask is not something trivial
(e.g. a voice activity detector), while the reconstruction
losses using the DKL will ensure that a source-dependent
mask is generated, that minimizes the aforementioned dis-
tance. The squared matrix L2 norm is employed to improve
the generalization of the model.

By processing each subsequence using the proposed
method, the estimates are concatenated together to form
|Ŷj | ∈ RM×N≥0 . For the singing voice we retrieve the complex-

valued STFT Ŷ j=1 by means of 10 iterations of the Griffin-
Lim algorithm (least squares error estimation from modified
STFT magnitude) [18] initialized with the mixture’s phase

and using |Ŷj |. The time-domain samples x̂j=1 are obtained
using inverse STFT.

III. Experimental Procedure

We use the development subset of Demixing Secret Dataset
(DSD100)1 and the non-bleeding/non-instrumental stems
of MedleydB [19] for the training and validation of the
proposed method. The evaluation subset of DSD100 is used
for testing the objective performance of our method. For
each multi-track contained in the audio corpus, a monaural
version of each of the four sources is generated by averaging
the two available channels. For training, the true source
|Yj | is the outcome of the ideal ratio masking process [20],
element-wise multiplied by a factor of 2. This is performed
to avoid the inconsistencies in time delays and mixing gains
between the mixture signal and the singing voice (apparent
in MedleydB dataset). The length of the sequences is set to
T = 60, modeling approximately 0.5 seconds, and L = 10.
The thresholds for the minimization of Eq.(9) are τrec = 1.5
and τmin = 0.25 and the corresponding scalars are λmask =
1e−2, and λdec = 1e−4. The hidden to hidden matrices of all
RNNs were initialized using orthogonal initialization [21] and
all other matrices using Glorot normal [22]. All parameters
are jointly optimized using the Adam algorithm [23], with
a learning rate of 1e−4, over batches of 16, an L2 based
gradient norm clipping equal to 0.5 and a total number of
100 epochs. All of the reported parameters were chosen
experimentally with two random audio files drawn from
the development subset of DSD100. The implementation is
based on PyTorch2.

We compared our method with other state-of-the-art ap-
proaches dealing with monaural singing voice separation,
following the standard metrics, namely signal to noise ra-
tio (SIR) and signal to distortion ratio (SDR) expressed in

1http://www.sisec17.audiolabs-erlangen.de
2http://pytorch.org/

Table 1: Median SDR and SIR values in dB for the investi-
gated approaches. Proposed approaches are underlined.
Higher is better.

Method SDR SIR Method SDR SIR
GRA[4] -1.75 1.28 MIM-DWF+[12] 3.71 8.01
MIM-HW[11] 1.49 7.73 GRU-NRI 3.62 7.06
CHA[6] 1.59 5.20 GRU-RISs 3.41 8.32
MIM-DWF[12] 3.66 8.02 GRU-RISl 4.20 7.94

dB, and the rules proposed in the music source separation
evaluation campaign [1] (e.g. using the proposed toolbox
for SIR and SDR calculation). The compared methods
are: i) GRA: Deep FFNs [4] for predicting both binary
and soft masks [20] which are then combined to provide
source estimates, ii) CHA: A convolutional encoder-decoder
for magnitude source estimation, without a trainable mask
approximation [6] iii) MIM-HW: Deep highway networks
for music source separation [11] approximating the filtering
process of Eq.(1), retrained using the development subset
of DSD100, and iv) MIM-DWF, MIM-DWF+: The two
GRU encoder-decoder models combined with generalized
Wiener filtering [12], trained on the development subset
of DSD100 (MIM-GRUDWF) and the additional stems of
MedleydB (MIM-DWF+). The methods denoted as MIM-
HW, MIM-DWF, and MIM-DWF+ were re-implemented
for the purposes of this work. For the rest of the methods
we used their reported evaluation results obtained from [1].
Our proposed methods are denoted as GRU-NRI, which
does not include the recurrent inference algorithm, and two
methods using different hyper-parameters for the recurrent
inference algorithm: GRU-RISs, parametrized using a max-
imum number of iterations iter = 3, and τterm = 1e−2,
and GRU-RISl parametrized using a maximum number of
iterations iter = 10 and τterm = 1e−3, which where selected
according to their performance in minimizing Eq. (9).

IV. Results & Discussion

Table 1 summarizes the results of the objective evalua-
tion for the aforementioned methods by showing the me-
dian values obtained from the SDR and SIR metrics. The
proposed method based on recurrent inference and sparsi-
fying transform is able to provide state-of-the-art results
for monaural singing voice separation, without the neces-
sity of post-processing steps such as generalized Wiener
filtering, and/or additionally trained deep neural networks.
Compared to methods that approximate the masking pro-
cesses (GRA, MIM-HW, MIM-DWF, and MIM-DWF+)
there are significant improvements in overall median perfor-
mance of both the SDR and SIR metrics, especially when
the masks are not a learned function, such as in the case
of CHA. Using the proposed method, a gain of 0.49 dB
for the SDR is observed between MIM-DWF+ and GRU-
RISl and 0.30 dB for the SIR between the MIM-DWF and
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GRU-RISs. Finally, by allowing a larger number of iter-
ations during the recursive inference the mask generation
performance and using skip-filtering connections we see an
increase in SDR which outperforms the previous methods
MIM-DWF and MIM-DWF+, but at the cost of a loss
in SIR. A demo for the proposed method is available at
https://js-mim.github.io/mss_pytorch/.

V. Conclusion

In this work we presented an approach for singing voice
separation that does not require post-processing using gen-
eralized Wiener filtering. We introduced to the skip-filtering
connections [12] a sparsifying transform yielding compara-
ble results to approaches that rely on generalized Wiener
filtering. Furthermore, the introduced recurrent inference
algorithm was shown to provide state-of-the-art results in
monaural singing voice separation. Experimental results
show that these extensions outperform previous deep learn-
ing based approaches for singing voice separation.
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