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NO-REFERENCE WEIGHTING FACTOR SELECTION FOR BIMODAL TOMOGRAPHY

Yan Guo and Bernd Rieger

Department of Imaging Physics, Delft University of Technology
E-mail: {y.guo-3, b.rieger}@tudelft.nl

ABSTRACT
Bimodal tomography introduces a weighting factor α to in-
corporate X-ray data into projection images acquired from
scanning transmission electron microscope (STEM) for
achieving an atom-specific three-dimensional (3D) recon-
struction of an object on the nanoscale. Currently its value
is chosen by computing reconstructions for a large range of
α ∈ (0, 1) and comparing them to a hand-segmented ground
truth with the mean square error (MSE). Since this is infea-
sible for an industrial application, in this paper we propose
an image quality metric to quantify the quality of tomograms
in terms of cross-atomic contamination and noise for select-
ing the weighting factor without a ground truth. Numerical
results demonstrate that our framework can determine close-
to-optimal weighting factor within an accuracy of ±0.03.
Moreover, approximating the shape of the minimum by a
parabola effectively reduces the computational time by 90%.

Index Terms— Image quality assessment, bimodal tomo-
graphic reconstruction

1. INTRODUCTION

Electron tomography (ET) is essential for studying specimens
in materials science, as it reveals the 3D structure of an ob-
ject from a series of its two-dimensional (2D) projections on
the nanoscale [1]. In STEM, projections formed by a high-
angle annular dark-field (HAADF) detector have high signal-
to-noise ratio (SNR) but only contain aggregated informa-
tion of all chemical elements along the projection direction
[1]; projections obtained from energy dispersive X-ray spec-
troscopy (EDS) accomplish an atom-specific reconstruction
but suffer from low SNR [2]. In order to simultaneously
exploit these two complementary techniques, HAADF-EDS
bimodal tomography (HEBT) proposed in [3] introduces a
weighting factor α to link both modalities into one recon-
struction. The choice of α depends on the noise level and
influences the reconstruction result. However, there is no a
priori way to determine the “best” value. In [3], the opti-
mal α is found by computing reconstructions over the whole
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range of α ∈ (0, 1) and comparing them to a hand-segmented
ground truth with the MSE. Since this is inapplicable for an
industrial application, a quantitative quality control for recon-
structions in the absence of a reference image is desired.

In recent years, no-reference image quality assessment
has been widely investigated for different application scenar-
ios [4] [5]. Proposed algorithms can be generally divided
into two categories: (i) distortion-specific, that is, algorithms
are designed specifically for one distortion. For instance, the
framework presented in [6] uses Gabor filter to evaluate the
streak (ringing) artifacts resulting from the iterative image
restoration; (ii) non-distortion-specific, i.e. algorithms are
generic and can respond to multiple degradations. Besides
applications in computer vision, a lot of efforts have also been
dedicated to developing assessment algorithms in the field
of ET, such as evaluating the performance of tomographic
reconstruction algorithms and/or the quality of tomograms.
In [7], the length of phase boundary is treated as a quantitative
morphological image characteristic to compare the commonly
adopted filtered backprojection algorithm and the DIRECTT
technique. In [8], Okariz et al. statistically analyze the inten-
sity profiles at the edge of objects in the reconstructed volume
to set the number of iterations used for the simultaneous iter-
ative reconstruction technique.

In this paper, we propose an image quality metric to
choose the close-to-optimal weighting factor α for HEBT by
means of quantifying the reconstruction quality of a core-
shell nanoparticle consisting of gold (Au) and silver (Ag).
It can replace the MSE adopted in [3] if no ground truth is
available. To begin with, Section 2 introduces the HEBT
reconstruction technique and the methodology for deciding
the optimal α with a hand-segmented ground truth. Related
image quality assessment algorithms are briefly reviewed in
Section 3 as prior work, followed by our proposed quality
metric, and results presented in Section 4. Section 5 summa-
rizes our work and discusses possible future extensions.

We use the following notations throughout this paper.
Bold uppercase W and lowercase w represent matrices and
column vectors, respectively, while non-bold letters W and
w are scalars. Operators (·)T and ∗ stand for transpose and
convolution. Rm×n denotes the space of all m × n matrices
with real-valued elements.



2. HAADF-EDS BIMODAL TOMOGRAPHY

Assume a specimen withE different chemical elements. Each
element e = 1, · · · , E is associated with an unknown volu-
metric object x(e) ∈ RN×1, where N is the total number
of equally-spaced voxels to be reconstructed. Let HAADF-
STEM and EDS-STEM images be ph ∈ RM×1 and p(e) ∈
RM×1, respectively, where M is the total number of pixels in
one projection image. In [3], HAADF-EDS bimodal tomo-
graphic reconstruction is defined as a least-square minimiza-
tion problem

x∗ = arg min
x

α2

∥∥∥∥∥ph −
E∑
e=1

Wx(e)

∥∥∥∥∥
2

2

+(1−α)2
E∑
e=1

∥∥∥r(e)p(e) −Wx(e)
∥∥∥2
2

(1)

in which x = [x(1)T , · · · ,x(E)T ]T , and each entry wmn in
W ∈ RM×EN is determined by the intersected area between
the m-th ray integral and n-th voxel [9]. The response ratio
factor r(e) for element e is calculated as phm =

∑E
e=1 r

(e)p
(e)
m ,

m = 1, · · · ,M . Here, a weighting factor α ∈ (0, 1) is in-
troduced to balance the residue terms of HAADF-STEM and
EDS-STEM. In principle, α can be arbitrarily chosen between
0 and 1, whereas in practice it can neither be too small nor
too large. The former makes the influence from HAADF-
STEM hardly observable and the latter leads the minimization
of EDS-STEM residue term to become inefficient.

(a) (b) (c) (d)

Fig. 1: Au (upper) and Ag (lower) images at slice 150.
The size of the reconstruction volume is 300 × 300 × 300.
(a) ground truth; (b)-(d) HEBT reconstruction results with
N = 100 iterations and weighting factorsα ∈ {0.5, 0.7, 0.9},
respectively. For better visualization, we perform percentile
contrast stretching from 0 to 87%.

We consider the same core-shell nanoparticle as in [3] that
consists of Au (inner shell) and Ag (outer shell). Fig. 1 de-
picts HEBT reconstruction results for N = 100 iterations
and different weighting factors α ∈ {0.5, 0.7, 0.9} at slice
150 along the z-axis. The size of the reconstructed volume is

300 × 300 × 300. Two binary images in the first column are
the hand-segmented ground truth with homogeneous inten-
sity. For α = 0.5,N = 100 introduces overfitting, that is, the
least-square optimization fits to the noise rather than true pat-
terns, and reconstructions in Fig. 1(b) are noisier with percep-
tible streaks showing up. In Fig. 1(d), α = 0.9 is too large and
hence Au leaks into the background of Ag reconstruction and
vice versa. In order to find the “best” value of α beforehand,
Zhong et al. compute the reconstruction x for a large range of
α ∈ (0, 1) and compare it to the hand-segmented ground truth
xr (Fig. 1(a)) via MSE(xr,x) = min ‖xr − cx‖22, where c is
a scaling factor [3]. Since this is not feasible for an industrial
application, an image quality metric to quantify the quality
of reconstructions is desired, such that α can be determined
without a hand-segmentation.

3. DETERMINE WEIGHTING FACTOR WITHOUT
GROUND TRUTH

According to Fig. 1(a), ideal reconstructions of the core-shell
nanoparticle should be binary with homogeneous foreground
and zero-valued background. Inspired by the analysis of
Fig. 1, we build our non-distortion-specific quality metric on
assessing: (i) cross-atomic contamination, that is, how much
Au is showing up in Ag regions and vice versa; (ii) inhomo-
geneity of the extracted fore- and background, and (iii) noise
at the same time. In this section, we first present metrics that
separately evaluate the aforementioned three, followed by our
quality metric for choosing the close-to-optimal α for Au in
the absence of its ground truth. The analysis of Ag follows
the same principle.

3.1. Cross-atomic contamination metric QCC

In order to measure the cross-atomic contamination, we first
generate a binary mask BAu for Au slice by slice based on the
edge candidate points that are found in its volumetric recon-
struction. In [10], edges are extracted by a scale-normalized
differential entity Gσgg = σg(L

2
x +L2

y) with L = f ∗ gg(·;σg),
such that the scale at which an edge being detected can be
automatically selected. Edge strength is defined as the gra-
dient magnitude of a smoothed image L, which is obtained
by convolving the input image f(x, y) with a Gaussian kernel
gg(·;σg) whose standard deviation is σg. Finally, we calculate
the cross-atomic contamination metric QCC by averaging the
intensity of pixels outside the mask.

3.2. Inhomogeneity metrics QIH,1 and QIH,2

We evaluate the inhomogeneity of a non-ideal gray-scaled Au
reconstruction by comparing it to its binary mask BAu. In
[11], similarity between two images f1 and f2 is measured by



the Pearson coefficient

PC =

∑
i(f1,i − f̄1)(f2,i − f̄2)√∑

i(f1,i − f̄1)2
∑
i(f2,i − f̄2)2

(2)

where f1,i and f2,i are the intensity values of i-th pixel, f̄1 and
f̄2 the average intensities over all pixels in f1 and f2, respec-
tively. When f̄1 and f̄2 are not subtracted, a new coefficient,
the so-called overlap coefficient

OC =

∑
i f1,if2,i√∑

i f1,i
2∑

i f2,i
2

(3)

is defined. We represent our two inhomogeneity metrics as
QIH,1 = 1− PC and QIH,2 = 1− OC, respectively.

3.3. Noise metrics QN,1 and QN,2

We investigate the noise level of Au reconstructions by com-
puting the amount of streaks and oriented structures they con-
tain. It is based on the previous work in [6] and [12].

In [6], streak artifacts are analyzed by a 2D Gabor filter,
which can be regarded as modulating a Gaussian envelope
by a sinusoidal wave with fixed frequency. Given a specific
orientation θ, the corresponding Gabor response for an input
image f(x, y) is Gθ = f ∗ g(·;ϕ, γ, σ, Fg, θ), in which ϕ is
the phase offset, γ and σ the spatial aspect ratio and stan-
dard deviation of the Gaussian envelope, Fg and θ the cen-
tral frequency and orientation of the Gabor filter, respectively.
Methodology proposed in [6] works as follows: decompose
f(x, y) using Gabor filter w.r.t. different orientations to ob-
tain Gθ(u, v); for each row i (or column j) in Gθ, calculate
the maximum oscillation strength Si (or Sj), which is defined
as the response difference between the local maximum and
its neighboring local minimum; compute the overall metric
value for streak artifacts by finding the maximum oscillation
strength S among all rows and columns and averaging over
all orientations θ. Since we do not have a priori knowledge of
the width of streaks, we further extend the original module to
a filter bank based version. Its design involves two important
parameters: Fg and θ. The former is determined by the cen-
tral frequency of the filter at the highest frequency (FM ), the
ratio between two neighboring central frequencies (Fr) and
the number of frequencies (NF ), and the latter by the number
of orientations (Nθ). We calculate our first noise metric QN,1

by modifying the algorithm proposed in [6] as follows: oscil-
lation strength calculation and maximum value extraction are
performed not only over all rows and columns but also over
all frequency bands.

In [12], oriented structures are extracted by a Gaus-
sian profile with orientation selectivity. A linear orien-
tation space for a specific angle φ is defined as Hφ =
f ∗ h(·;Nh, Fh, Bh, φ) where h(·;Nh, Fh, Bh, φ) is ob-
tained by rotating the orientation selective template filter

h(·;Nh, Fh, Bh) over φ. Nh, which relates to the orientation
selectivity, is the number of filters along the φ-axis, and Fh
and Bh the central frequency and bandwidth of the Gaussian
profile, respectively. After constructing the orientation space,
we further find the maximum response over φ and denote it
as our second noise metric QN,2.

3.4. Proposed method: A combination of individuals

For finding a proper combination for the aforementioned indi-
vidual metrics, we first evaluate their own properties for dif-
ferent α ∈ [0.1, 0.9] with a step size of 0.01 at slice 150.
Table 1 lists all important parameters, for choosing which we
follow the guideline in [6] [12] [13] without fine tuning.
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Fig. 2: Metric values of cross-atomic contamination, inhomo-
geneity and noise versus weighting factor α for Au with 100
iterations adopted for HEBT at slice 150.

As illustrated in Fig. 2, the background of Au reconstruc-
tion gets more contamination from Ag when α is increasing
as it increases the ratio of HAADF-STEM term that contains
aggregated information. Moreover, inhomogeneity and noise
metrics have a clear unique minimum. We define our qual-
ity metric Q as the product of all individual metrics, namely
Q = QCC × QIH,1 × QIH,2 × QN,1 × QN,2. Note that we
do not normalize the individual metrics to [0, 1], otherwise
the minimum of each curve at zero would automatically dic-
tate the minima of the multiplication. Fig. 3 depicts MSE
and the combinational quality metric Q for Au w.r.t. differ-
ent weighting factor α and number of iterations N , in which
Fig. 3(a) is the same as Fig. 7 in [3]. It can be observed that
there is a relatively large range of α(∼ 0.18) within an uncer-
tainty of ±0.03, see red dash-dot lines in Fig. 3(a). Although
parabolic curves in Fig. 3(b) are slightly different from the
ones in Fig. 3(a), the optimal values of α around the minima
of parabolas are almost the same.

4. RESULTS

Since HEBT only takes one α value as the input but recon-
structs both Au and Ag as the output, we consider them si-
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Fig. 3: MSE and quality metric Q versus weighting factor α
with different number of iterations N for Au at slice 150.

multaneously in this section by summing up their MSE (or
Q) values and finding the minima. Note that it takes around
two hours to generate one parabolic curve in Fig. 3(b), during
which CPU time is mainly occupied for noise analysis. There-
fore, we choose 8 equidistant samples for α from 80 points in
total and perform polynomial fitting to predict parabolas and
reduce the computational time by 90%.

Table 1: Parameters for reconstruction quality assessment

Ref. Parameter Symbol Value
Phase offset ϕ 0

[6]
Spatial aspect ratio γ 0.5

Central frequency of filter at
the highest frequency

FM
√

2/4

[13] Frequency ratio Fr
√

2

Number of orientations Nθ 8

Number of frequencies NF 3

Number of filters Nh 33

[12]
Central frequency of Gaus-
sian profile

Fh 0.15

Bandwidth of Gaussian pro-
file

Bh 0.5Fh

Fig. 4 depicts the optimal values of α for different number
of iterationsN at slice 150, which are found by MSE, true and
predicted quality metric Q, respectively. It demonstrates that
besides α obtained from MSE, the other two also tend to in-
crease with the increment of N . This is because for large N ,
large α guarantees that it converges to the true pattern rather
than noise. Moreover, α from both true and predicted quality
metric values achieve an uncertainty of ±0.03 independent
from the number of iterations N adopted for HEBT.

Fig. 5 illustrates the consistency of the optimal α w.r.t.
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Fig. 4: Weighting factor α versus number of iterations N
adopted for HEBT at slice 150.

different slices while Au and Ag are being considered simul-
taneously. Note that our quality metric Q is the closest to
MSE at slice 150 because it is in the middle of the reconstruc-
tion stack (300 × 300 × 300) and thus suffers the least from
boundary artifacts. However, even in the worst case where Q
being the furthest to MSE, i.e. slices 80 and 170, α calcu-
lated and/or predicted by our quality metric still achieves an
accuracy of ±0.03.
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Fig. 5: Weighting factor α versus slice index with 100 itera-
tions adopted for HEBT.

5. CONCLUSION

In this paper, we propose a no-reference quality metric for
HEBT to automatically determine its weighting factor α by
quantitatively evaluating the quality of tomograms. Fur-
thermore, approximating the parabola by polynomial fitting
reduces the computational time to 10%, which makes our
quality metric more promising. As for the future work, we
consider embedding the proposed assessment module into
a learning system, such that α can be chosen in real-time
without the need to perform reconstruction.
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