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ABSTRACT

Tissue assessment for chronic wounds is the basis of wound
grading and selection of treatment approaches. While sev-
eral image processing approaches have been proposed for au-
tomatic wound tissue analysis, there has been a shortcom-
ing in these approaches for clinical practices. In particular,
seemingly, all previous approaches have assumed only 3 tis-
sue types in the chronic wounds, while these wounds com-
monly exhibit 7 distinct tissue types that presence of each one
changes the treatment procedure. In this paper, for the first
time, we investigate the classification of 7 wound tissue types.
We work with wound professionals to build a new database of
7 types of wound tissue. We propose to use pre-trained deep
neural networks for feature extraction and classification at the
patch-level. We perform experiments to demonstrate that our
approach outperforms other state-of-the-art. We will make
our database publicly available to facilitate research in wound
assessment.

Index Terms— Wound assessment, Tissue classification,
Deep learning, Model transfer, Knapsack problem

1. INTRODUCTION

Chronic wounds are a major threat to public health and econ-
omy. They are the byproduct of the frailty associated with ei-
ther aging or diabetic patients, with a growing number world-
wide [1]. These wounds require frequent visits to hospital
and do not heal for months and often years, and if left open,
the patient is increasingly subject to risk of infection, ampu-
tation and even death. On the other hand, the healthcare cost
to provide properly and personalized care to these patients is
enormous. Therefore, there is a pressing need for automatic
approaches to aid caregivers and medical personnel.

The first step for wound treatment is wound grading,
in which medics describe the wound by its dimensions and
the color of its tissue composition. There are 7 tissue types
commonly present at the wound site [2]: necrotic, sloughy,
healthy granulating, unhealthy granulating, hyper granulat-
ing, infected, and epithelizing. Necrotic is the dead tissue and
is black in color. It occurs when skin cells inside of the wound
die off. The sloughy tissue is a type of wet necrotic tissue
that is detaching itself from the wound site, and is often seen
white, yellow or grey in color. Healthy granulating is the

new grown tissue that is generated when the wound surface
area is starting to heal by tiny blood vessels that appear at
the surface, with light red or pink in color, and will be moist.
Unhealthy granulating tissue is when the process of gran-
ulation is irritated by problems such as infection or lack of
good blood supply, and appears dark red, bluish, or very pale,
and may indicate ischemia or infection in the wound. Hyper
granulating tissue is the tissue that grows above the wound
margin when the proliferative phase of healing is prolonged
usually as a result of bacterial imbalance or irritant forces.
Infected tissue is greenish color tissue with foul smell caused
by bacterial infection that may spread to different parts of the
wound and it surrounding tissues. Finally, epithelizing tissue
is a group of tightly-packed cells that provides protective
layers over the granulating tissue.

Several automatic wound tissue classification approaches
have been proposed in the literature, such as [3 14} 5]. As the
first step, wound area is selected using either automatic (e.g.
in [6])) or semi-automatic (e.g. in [7]) techniques. Following
is usually the image pre-processing step for color correction
and white balance estimation (e.g. in [8]]). Tissue classifica-
tion step is then performed, by incorporating one or several
image descriptors and classification. The most commonly
used features are color histograms (e.g. in [9], texture pa-
rameters such as entropy, sum of squares variance, wavelet,
and local binary patterns (LBP) (e.g. in [[10]). While there are
differences in the requirements and robustness of these ap-
proaches, an important assumption in seemingly all of these
approaches has undermined their usability. These methods
assume that there are only 3 tissue types (Necrotic, Sloughy,
and Granulation) present at the wound bed, ignoring and com-
bining other types. This is while in modern medical prac-
tices chronic wound tissues are categorized into the afore-
mentioned 7 types, with each one affecting the treatment pro-
cedures. Clustering the real 7 tissue types into 3 clusters can
therefore be insufficient for clinical use.

In this work, we propose an automatic wound tissue clas-
sification system that correlates to actual clinical assessment
and supports clinical decision making. Working with wound
professionals, we firstly collected a dataset of chronic wounds
and labeled into 7 types. We propose to use layers of a pre-
trained deep neural network (DNN) as high-level image rep-
resentations, and subject them to dimensionality reduction.
This smaller set of features is then used to train an SVM clas-
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Fig. 1. Tissue classification block diagram: image patches centered around each pixel is fed to DNN. The fully connected layers
of DNN are treated as features, which are then subjected to dimensionality reduction and classification.

sifier to label the wound image into 7 tissue types. For our
experiments we use AlexNet [11] trained on LSVRC-2010
ImageNet training set [[12]. Our results on 350 clinically as-
sessed chronic wound images and comparison with previous
approaches show accurate and robust classification of 7 tissue
types. Our contributions in this work are included: (I) address
the fine-grained, clinically-relevant wound tissue classifica-
tion problem of 7 tissue types. To the best of our knowledge,
this is the first attempt to classify more than 4 wound tissue
types. (I) propose an accurate and robust wound tissue anal-
ysis using DNN model transfer. (III) We will make available
an image dataset with clinically approved labeling. Labeled
dataset for wound is scarce and requires tremendous effort to
build, but is important for wound assessment research. (IV)
We solve an NP-hard optimization based on Knapsack prob-
lem to reach a balanced distribution of tissue types in both
train and test sets.

2. METHODOLOGY

We propose to use a supervised Deep Neural Network to de-
termine the tissue types [13]. While training a DNN from
scratch requires a significantly large training dataset, recent
works have shown that the higher layers of a DNN trained on
a large labeled dataset could be general enough for another
image classification task (a.k.a. transfer learning) [14]]. We
here propose to reuse a pre-trained DNN as a feature extrac-
tor, instead of using it directly as classifier.

We present our classification pipeline as follows: Each
image is labeled based on the included tissue types and is par-
titioned into n X n patches. The class of each patch is deter-
mined based on the majorities of included pixels. This square
patch is then fed to the DNN as an input. Next, instead of us-
ing DNN classification output, we treat DNN layers as image
features. In other words, we rely on layers of the DNN to ex-
tract the high-level information as image representations in a
high-dimensional space. We then apply dimensionality reduc-
tion and training on these features to reach the final patch la-
bel (here performed with an SVM classifier). In this work, we
consider AlexNet [11] as our DNN, and use Matconvnet [[15]],
a widely-adopted open source deep learning framework. Fig-

ure [T]illustrates the block diagram of our proposed approach.
As illustrated in Figure [T} AlexNet structure has 5 convolu-
tional layers (convl to convb) and 3 fully-connected layers
(fc6, fc7 and fc8). Each convolutional layer contains multi-
ple kernels, and each kernel represents a 3-D filter connected
to the outputs of the previous layer. Each fully-connected
layer contains multiple neurons that each one is connected to
all the neurons in the previous layer. The weight of each con-
nection is optimized during the original training on the Ima-
geNet dataset. Different layers in a DNN are often considered
to have different level of features. The first few layers contain
general features that resemble Gabor filters or blob features.
The higher layers contain specific features, each representing
particular class in dataset [[14]. Thus features in higher layers
are considered to have higher level information compared to
general features in base layers.

Employing transfer learning using AlexNet, we need to
consider two main factors, namely, the size of the new dataset,
and the similarity between the original and the new datasets
[14]. AlexNet model is trained on the ILSVRC-2012 dataset
with 1.2 million images in 1000 categories, including gen-
eral kinds of natural and man-made images [12]. We here
intent to use this model to classify our dataset of wound im-
age patches that is significantly smaller compare to original
ILSVRC-2012 dataset. It is therefore highly likely that fine-
tuning AlexNet on our wound image dataset would result in
an over-fitted model, and thus we use AlexNet as a fixed fea-
ture extractor instead.

The second concern is the difference between the nature
of the tissue image classification, and the image classification
task AlexNet originally trained for. Despite this difference
in the classification task, previous works such as [[14, (16} [17]]
have reported the fully connected layers to contain high-level
information, seemingly much wider than what is needed for
the original classification task. In order to examine this hy-
pothesis and find the best feature set to fulfill our purpose,
we assess all three fully connected layers (referred to by fc6,
fc7, and fe8 in Figure[T) in AlexNet for their discriminative
power in wound tissue classification. We do not consider the
convolutional layers due to their sizes (43264 features in the
smallest) that are too large for our current dataset.



For each image patch extracted from the wound image,
we resize it to 227 x 227, make it valid AlexNet input.
We extract the fully connected layers as image representa-
tions, namely, fc6, fc7, and fc8, with 4096-, 4096-, and
1000-dimension vectors respectively. We then apply Prin-
cipal Component Analysis (PCA) on the extracted layer
feature vector, f = [f1, f2, ..., f1006], to reduce f to a vector
f0 = [f0q, fOq, ..., fO,,], with m = 18 dimensionality. The
resulting DNN-based feature vectors, f0, are then used to
train a linear SVM classifier. SVM is trained using k-fold
cross validation. It is important to have even distribution of
data set between folds with respect to the tissue class types.
This problem can be formulated as an NP-hard Knapsack
problem, and we solve this with a greedy approach, to reach a
balanced distribution of tissue types in both train and test sets.
Specifically, in each step, the fold of one image is determined
by solving the Knapsack problem. The cost is defined as
the standard deviation (SD) of tissue types distribution over
folds in each step. Considering [,, . as the number of class ¢
patches in n-th image , the total number of class c patches in

fold k, in step s is defined as:
)\k,s

Lies = lne ()
n=1

where, A, ; is the number of images placed in fold  till step
s. The mean value of total number of class c patches in s-th
step is:

1 K
Lc,s = E Z Lk,c,s (2)

The SD of class c patches in step s is calculated as:

K 2
Lics—L
Oes = \/ e { ne o) 3)

The total SD is the sum of SDs over all classes, o5 =
Zle Oc,s» which is used as the cost function in our opti-
mization problem. In each step, the fold of related image is
determined in a way to minimize the total cost. Note that
since we focus on the wound tissue classification, we do not
consider pre-processing steps such as wound area detection,
and proceed with an already selected Region of Interest (ROI)
of the wound. Chronic wound area detection is well-studied
in previous works such as [6]].

3. EXPERIMENTAL EVALUATIONS

In this section we present and discuss performance measures
of our method.

Dataset: Our dataset of wound tissues consists of 350 im-
ages of chronic wounds, captured in different conditions (illu-
mination, pose, etc.), with different camera devices, with dif-
ferent resolutions (ranging from 216 x 158 to 4208 x 2368).
While the majority of these images are collected by our team,
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Fig. 3. Examples of tissue labeling. From left to right: wound
image, ground truth and our method.

for the sake of diversity we added a subset of low-resolution
images from the web [18]. Working with wound care special-
ists, we manually label all images based on clinical wound
assessment procedure guidelines. As we will be providing
pixel-level labels for each image, it is important to note that
the top 3 tissue types in terms of number of labeled pixels are
sloughy, necrotic, and then healthy granulating. This uneven
distribution is due to the distribution of collaborating patients,
which is being addressed in our next data collection.
Experimental Setup: In this work, we propose a patch-
based scheme for wound tissue classification. We partition
the images into 20 x 20 patches and classify each wound patch
into one tissue class.
The classification is a two-step process: First, we compute a
set of features for each patch; second, we build a classifica-
tion model based on the extracted features. To build a set of
discriminative features, we run AlextNet and extract fc6, fc7,



Table 1. Accuracy of different methods versus tissue types.

Tissue Type H Necrotic ‘ Healthy Gran. ‘ Slough ‘ Infected ‘ Unhealthy Gran. ‘ Hyper Gran. ‘ Epithelialization ‘ Overall ‘

AlexNet 90.65 83.12 80.88 | 95.54 82.10 94.17 78.34 86.40
HSV 75.16 83.62 85.70 | 87.87 65.20 75.73 69.70 77.57
LBP 82.94 85.42 8298 | 89.93 83.61 80.81 51.93 79.66

HSV+LBP 77.75 80.89 82.96 | 77.33 80.41 82.61 57.69 77.09

Fig. 4. sample images with large errors. Tissue types from
left to right: unhealthy-, hyper-, and healthy-granulation.

Fig. 5. sample images with small errors. Tissue types from
left to right: infected, necrotic and slough.

and fc8 layers output and then apply PCA on the extracted
features. To match the input size of AlexNet, each patch is
then resized to 227 x 227 x 3. For the classification step, we
use SVM with a linear kernel. In the experiment, we split the
data into disjoint training and testing sets, in a manner that
the data which is present in the training set is not allowed
to be in the testing set. But in order to make these two sets
completely disjoint, we employ k-fold cross validation on the
images rather than the patches, i.e. the patches of a particular
image have the same cross validation index as their parent im-
age. This approach prevents having highly correlated data in
both training and testing sets, improving the generalizability
of the results.

Results and discussions: Table [T] reports the classifica-
tion accuracy for seven wound tissue types using extracted
features from pre-trained DNN and conventional features.
As mentioned before, we use 3-fold cross validation. Cor-
respondingly, the mean values of all three folds’ results are
reported in this table.

We have used AlexNet as pre-trained network for feature ex-
traction. Besides, in order to compare the performance of
classification,we have used the RGB and HSV histograms as
color descriptors and the LBP as a texture descriptor. Color
and texture features were fed to the classifier. As one can
see, using pre-trained DNN as feature extractor, results in
better classification accuracy compared to conventional fea-
tures. In our previous work [19], we have shown that the
conventional features revealed a high discriminative power

in the three-class scenario. However, they failed to reach an
acceptable level of performance when tested in the seven-
class scenario and thus cannot be used for clinical purposes.
While in three class scenarios each class can be separated
using simple features like color and texture, in realistic seven
class tissue types more powerful features are needed. We
have also analyzed the results and extracted the images with
large error, which degrade the overall evaluation parameters.
FigureEl shows three of such images. Besides, there are some
images that have very small error. Some of these images that
have small error are shown in Figure 5] Also, Figure [3] il-
lustrates some examples of patch level prediction of different
tissue types by our algorithm. Furthermore, we investigate
the mean image representation of patches that excite or in-
hibit highest contributing dimensions in each feature space.
Excitation(/inhibition) mean image is calculated by averaging
all patches that lead to top(/bottom) values for each feature
dimension. This comparison illustrated in Figure[2]shows that
(DNN-based features) assign a low value to skin-like patches.
On the other hand, these features respond to a variety of dif-
ferent colors and textures that may represent different tissue
types. This suggests that DNN layers can extract features of
different nature, including color, edge, and texture. It seems
therefore, that DNN-based features represent patches in a
feature space that not only includes traditional color/texture,
but also additional higher level information that led to their
better discriminating power.

4. CONCLUSIONS

In this work we shed light on fine-grained tissue classification
to better realign the goal with clinically approved practices.
We then presented our approach to classify all 7 different tis-
sue types, based on using a pre-trained DNN as a feature ex-
tractor for wound tissue classification. We used DNN lay-
ers as image representation features and then perform feature
reduction and classification using PCA and linear SVM, to
reach patch-level labeling of the wound image. In our experi-
ments, we showed that the proposed method not only outper-
forms previously proposed features, it is more robust in dis-
crimination of similar looking tissue types and also against
illumination condition changes. We will make our current
dataset publicly available. In our future steps, we will investi-
gate classification on smart-phones for an accessible solution,
and address the associated technical challenges 21].
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