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A RANDOM MATRIX AND CONCENTRATION INEQUALITIES FRAMEWORK
FOR NEURAL NETWORKS ANALYSIS

Cosme Louart, Romain Couillet

CentraleSupélec, Gif-sur-Yvette, France.

ABSTRACT

This article provides a theoretical analysis of the asymptotic
performance of a regression or classification task performed
by a simple random neural network. This result is obtained by
leveraging a new framework at the crossroads between ran-
dom matrix theory and the concentration of measure theory.
This approach is of utmost interest for neural network analy-
sis at large in that it naturally dismisses the difficulty induced
by the non-linear activation functions, so long that these are
Lipschitz functions. As an application, we provide formulas
for the limiting law of the random neural network output and
compare them conclusively to those obtained practically on
handwritten digits databases.

Index Terms— Neural networks, random matrix theory,
concentration inequalities, extreme learning machines.

1. INTRODUCTION

One of the main popularity features of deep neural networks
lies in their (still barely fathomed) performance stability. That
is, as the number n and size p of the training data grow large
(and so does the network), independently of the random ini-
tialization point of the backpropagation learning algorithm,
essentially the same performances are ultimately achieved.
This characteristic is at the core of a current stream of re-
search, based on tools from statistical physics and random
matrix theory [1, 2, 3], aiming at theorizing these observa-
tions. And, indeed, [2] explored a model akin to deep neural
networks and concludes that the local minima of the learning
cost function become increasingly dense as data and network
grow large, having essentially the same associated loss, and
that the probability to escape these minima vanishes. How-
ever, the statistical physics model of [2] is in reality far from
satisfying from a neural network perspective as it, for once,
breaks all dependence induced by the non-linearities of the
activation functions (ReLU non-linearities being replaced by
products with independent Bernoulli random variables) and,
most importantly, assumes data to be constituted of random
independent entries; both conditions ensure that only random
uncorrelated scalars propagate through the network, a highly
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criticizable model for deep nets. Alternative neural network
analyses discard the non-linearities altogether, as in [4]; but
in this case, convergence to global minima are studied, which
are known not to be achieved by practical deep networks (for-
tunately so, as this avoids overfitting).

In this article, following our seminal works [5, 6], we pro-
pose a different angle of approach to neural network analy-
sis. Rather than modelling a complete deep neural net, we
focus here primarily on simple network structures, so far not
considering backpropagation learning but accounting for non-
linearities induced when traversing a hidden layer. The main
technical driver to this endeavor is the concentration of mea-
sure theory, which has the key features of (i) extending many
results holding for vectors of independent entries to the wider
scope of concentrated random vectors (see definition in sub-
sequent sections) and most importantly of (ii) being a the-
ory “stable to Lipschitz mappings” in that Lipschitz functions
f : Rp → Rq of concentrated random vectors in Rp are still
concentrated vectors in Rq . Feature (ii) notably allows one
to accommodate with the non-linear activation functions, so
long that these are Lipschitz (e.g., ReLU, sigmoid maps).

In [5], we merely exploited Feature (ii) as a technical
means to study the asymptotic (as n, p → ∞) performance
of extreme learning machines (ELM) [7] (i.e., single hidden-
layer regression networks with no backpropagation learning),
assuming a model encompassing a random connectivity ma-
trix (which induces the concentration of the output vectors)
but deterministic data. Under this model, however, while the
asymptotic network training performance was readily accessi-
ble, the asymptotic generalization performance remained out
of technical grasp and only a conjecture under “reasonable”
yet unclear assumptions on the deterministic dataset could be
proposed. As an answer, the present study strongly suggests
that a key property of neural network stability (and likely of
many statistical learning methods) lies, not in the (initial) ran-
domness of the inter-layer connections, but rather in a con-
centration property of the dataset. This property structurally
appears when studying the orders of magnitude of the output
of an ELM for concentrated versus deterministic data (in the
former case the output has a controlled magnitude, while in
the latter case the output may diverge as n, p→∞). Exploit-
ing Features (i) and (ii) together, and therefore working on
concentrated input data in the first place, brings us to a more



generic analysis framework, where Lipschitz non-linearities
need not be explicitly studied as they do not affect the con-
centration properties of the data.

Under this setting, in the present work, we generalize sev-
eral results from random matrix theory, by providing notably
a deterministic equivalent for the covariance matrix of a k-
mixture of concentrated vectors along with the asymptotic
statistical behavior of a ridge-regression on these vectors. As
an immediate aftermath, the asymptotic performance analysis
of ELMs, and in passing the spectral characterization of ran-
dom feature maps, then reduce to mere corollaries by speci-
fying the structural properties of the concentrated vectors.

Notation. In the remainder, C, c > 0 as well as C`, c` > 0 are
constants independent of all other parameters, and C ′, c′ > 0
constants dependent only on C, c.

2. SYSTEM SETTING

2.1. Basic notions of concentration of measure

We start our system modelling assumptions with a few defi-
nitions and essential notions of the concentration of measure
theory [8] that will be used in this article.

Definition 1 (Concentration of measure). The random vari-
able Z ∈ R is said to be concentrated and we denote Z ∈
α( · ) if, for Z ′ an independent copy of Z,

P (|Z − Z ′| ≥ t) ≤ α(t).

In particular, Z is normally concentrated, denoted Z ∈
CαN (

√
c · ), if Z ∈ Ce−c( · )

2

, and Z is exponentially con-
centrated, denoted Z ∈ Cαexp(c · ), if Z ∈ Ce−c · .

Normal and exponential concentrations owe their names
to the fact that normal and exponential random variables are
respectively normally and exponentially concentrated. The
fast decay of their tails allows for additional properties. In
particular, both concentrate around their means in the sense
that, e.g., Z ∈ CαN (

√
c · )⇒ P(|Z − EZ| ≥ t) ≤ C ′e−c′t2 .

Also, these fast concentrations induce moment controls:

Z ∈ CαN (
√
c · )⇒ ∀r > 0, E[|Z − EZ|r] ≤ C ′(2r/c)r/2

Z ∈ Cαexp(c · )⇒ ∀r > 0, E[|Z − EZ|r] ≤ C ′(2r/c)r.

As f(|Z −Z ′|) ≤ λ|Z −Z ′| for λ-Lipschitz functions f ,
we have the following structural property of the theory.

Property 1 (Lipschitz maps). For f : R → R a λ-Lipschitz
function and Z ∈ R,

Z ∈ α( · )⇒ f(Z) ∈ α( · /λ).

Similarly, linear combinations of concentrated random
variables remain concentrated. Products of concentrated ran-
dom variables are more difficult to handle, but we have the
following lemma, of importance in this article.

Lemma 1 (Concentration of squared variables1). If Z ∈
CαN (

√
c · ), then, with obvious notations,

Z2 ∈ C ′αexp

( c
2
·
)

+ C ′αN

( √
c

4|EZ|
·
)
.

The concentration of measure theory however finds its
fullest significance when considering random vectors (rather
than scalars) Z ∈ Rp. As most random vectors of practical
interest do not localize (e.g., large Gaussian vectors tend to
spread along a sphere), the notion of concentration of measure
for vectors is defined by means of all their Lipschitz “obser-
vations”.

Definition 2 (Concentration of random vectors). A vector
Z ∈ Rp is concentrated, denoted Z ∈ α( · ), if for every
1-Lipschitz map f : Rp → R, f(Z) ∈ α( · ). Normally and
exponentially distributed vectors are defined similarly.

A non-trivial result [8, Prop. 1.9.] is that standard normal
random vectors Z ∈ Rp are indeed normally distributed, in
the sense of Definition 2, with parameters C, c independent of
p. Precisely, Z ∼ N (0, Ip)⇒ Z ∈ 2αN ( · /

√
2).

With these notions at hand, we are in position to present
our work setting.

2.2. Setting

Keeping in mind that neural networks are mostly used for
regression or classification, we consider here a set of input-
output data pairs (x1, y1), . . . , (xn, yn) with xi ∈ Rp and
yi ∈ Rd (p will be supposed large while d remains small
irrespective of p). Our core assumption is that there exists k
measures µ1, . . . , µk such that, for each l ≤ n, xl ∼ µ` for
some ` ≤ k; besides all xl are independent and

Z ∼ µ` ⇒ Z ∈ C`αN (
√
c` · ).

ForZ ∼ µ`, we denote M̄` ≡ E[Z] (and M̄ = [M̄1, . . . , M̄k])
and C̄` ≡ E[ZZT] (not to be confused with the covari-
ance matrix). To avoid technicalities, we assume that C <
max1≤`≤k{ 1

p tr C̄`} < C ′ for C,C ′ > 0 independent of p.
We finally denote n` the number of xl’s drawn from µ`.

This set of hypotheses is of interest as it notably encom-
passes the cases where:

1. the xl’s arise from a Gaussian mixture model where
µ` = N (m`,Σ`);

2. the xl’s are the output of a random feature map xl =
σ(Wsl) for W ∈ Rp×q deterministic with ‖W‖ ≤ 1,
σ : R → R a 1-Lipschitz map (operating here entry-
wise), and sl ∈ Rq such that sl ∈ C`αN (

√
c` · ) (for

instance sl ∼ N (m`,Σ`)).
1This result is similar to the Hanson–Wright inequality [9, Th. 6.2.1],

but more adequate to our present setting; the proof, provided in an extended
version of this article [10], is also structurally simpler as it relies on more
elementary properties.



Item 2 justifies our claim that, under this setting, simple ran-
dom neural networks analysis reduces to the analysis of con-
centrated random vectors, disregarding the specificities of the
non-linear activation function since sl ∈ C`αN (

√
c` · ) ⇒

xl ∈ C`αN (
√
c` · ) and that only this concentration property

will be effectively used in the forthcoming analysis.

3. MAIN RESULTS

Under the assumptions of Section 2.2, extreme learning ma-
chines [7] may be merely seen as a linear ridge-regression
with training set (x1, y1), . . . , (xn, yn), where xl = σ(Wsl)
for some input observations s1, . . . , sn. Since linear ridge-
regression involves as a core object the sample covariance
matrix

CX ≡
1

n
XXT =

1

n

n∑
i=1

xix
T
i

with X ≡ [x1, . . . , xn] ∈ Rp×n, our first objective is to char-
acterize the eigenspectrum of this matrix for large p and n.
This first analysis shall subsequently allow for a full char-
acterization of functionals of the random matrix X , among
which the performance of ELM regression and classification.

3.1. Sample covariance matrix analysis

To tackle the eigenspectrum analysis of CX , random matrix
theory [11, 12] provides a quite versatile tool: the resolvent

QX ≡ (CX + zIp)
−1

of CX , for z > 0.2 The matrix QX encapsulates much
information about CX ; notably, the so-called Stieltjes trans-
form 1

p trQX uniquely characterizes the empirical eigenvalue
distribution 1

p

∑p
i=1 δλi(CX) of CX [13, Th. B.9.], while

quadratic forms of the type aTQXa allow for a characteriza-
tion of the projections |aTui(CX)| of deterministic vectors
a ∈ Rp on the “isolated” eigenvectors ui(CX) of CX [14].

Besides, QX is a convenient tool for the present article as
it naturally transfers concentrations. Indeed, since ‖QX‖ ≤
z−1 and ‖QXX‖ ≤

√
n, it is easily shown that the mapping

X 7→ QX is 2/
√
nz-Lipschitz so that X ∈ α( · ) ⇒ QX ∈

α(
√
nz/2 · ) (with X and QX respectively seen as vectors in

Rnp and Rp2 ).

Owing to this property, we have the following core result.

Theorem 1. Let Q̄ be defined as

Q̄ ≡

(
k∑
`=1

n`
n

C̄`
1 + δ`

+ zIp

)−1

2Usually one defines QX as QX = (CX − zIp)−1 for z ∈ C with
=z > 0 but analyticity arguments along with the nonnegative definiteness of
CX justify the equivalence of this definition here.

where (δ1, . . . , δk) ∈ Rk+ is the unique solution with nonneg-
ative elements of the system δ` = 1

n tr C̄`Q̄, ` = 1, . . . , k.
Then, for any unit-norm u ∈ Rp, the following non-

asymptotic inequalities hold

‖E[QX ]− Q̄‖ ≤
C ′
√

p
n max

(
1, pn

)
√
n

P

(∣∣∣∣1p tr (QX − Q̄)

∣∣∣∣ ≥ t+
C ′max

(
1,
√

p
n

)
√
n

)
≤ Ce−cnpt

2

P

(∣∣uT(QX − Q̄)u
∣∣ ≥ t+

C ′
√

p
n max

(
1, pn

)
√
n

)
≤ Ce−cnt

2

.

Sketch of Proof. Given the bound on ‖EQX−Q̄‖, the second
and third results follow from QX − Q̄ = (QX − EQX) +
(EQX − Q̄) and normal concentration inequalities based on
the Lipschitz character ofX 7→ QX . We are then left to prove
the first result. Let X−i = [x1, . . . , xi−1, xi+1, . . . , xn],
Q−i = QX−i

and Q = QX . By the identity Qxi(1 +
1
nx

T
i Q−ixi) = Q−ixi, we have

E[Q]− Q̄ =

k∑
`=1

n`
n
E[ε1

` + ε2
` ]

where, for any xl ∼ µ`, we introduced the matrices

ε1
` ≡

Q−lxlx
T
l Q̄(δ` − 1

nx
T
l Q−lxl)

(1 + 1
nx

T
l Q−lxl)(1 + δ`)

, ε2
` ≡

Q−lxlx
T
l QC̄`Q̄

n(1 + δ`)
.

Because of the leading factor 1
n in ε2

` , algebraic manipulations
similar to [6] ensure that this term vanishes faster than ε1

` . As
for ε1

` , the main technical part is to control

xTl Q−lxl − nδ` = (xTl Q−lxl − tr C̄`Q−l)

+ tr C̄`(Q−l − EQ−l) + (tr C̄`EQ−l − nδ`).

Since ‖Q−l‖ ≤ z−1 and xl ∈ C`αN (
√
c` · ), Lemma 1 ap-

plied to xTl Q−lxl = ‖Q
1
2

−lxl‖2 ensures that the first right-
hand side difference is normally-exponentially concentrated.
Since X 7→ QX is Lipschitz, the second difference is nor-
mally concentrated. As for the third (deterministic) term, its
control follows from pre-established random matrix results
(see e.g., [15]). Since normal and exponential concentrations
convert to bounds on moments, E[ε1

` ] can be appropriately
bounded, thereby completing the proof.

3.2. Ridge-regression and ELM classification

Linear ridge-regression for the training data pairs (xi, yi) pre-
viously defined consists in determining the vector β ∈ Rp×d
that minimizes, for z > 0, the cost

Etrain(β) ≡ 1

n

n∑
i=1

‖yi − βTxi‖2F + z‖β‖2F



(with ‖·‖F the Frobenius norm). Letting Y = [y1, . . . , yn]T ∈
Rn×d, the solution is explicitly given by β? = 1

nQXXY . For
a test data pair (x, y) ∈ Rp×d, the regression output of x is
then given by

S(x) = xTβ? =
1

n
xTQXXY.

For k-class classification purposes, one naturally takes yl =
e` ∈ Rk when xl ∼ µ` (hence d = k), with [e`]a = δ`a the
indicator vector of class `. This procedure strongly relates to
the kernel LS-SVM approach [16, 17].

The associated regression and classification performance
measures are the mean-square error E[‖S(x) − y‖2] and the
misclassification rate, respectively. In both cases, these re-
late to the probability distribution of S(x), which is then our
object of present interest. Our main result, restricted for read-
ability to the classical random matrix regime on n, p, reads:

Theorem 2. Let x ∼ µ` and assume max1≤i≤n ‖yi‖ < C.
Then, as n, p→∞ with p/n→ γ ∈ (0,∞),

V−
1
2

`

(
S(x)− S̄`

) L−→ N (0, Id)

where V` = V` − S̄`S̄T
` ,

S̄` ≡
1

n
M̄T
` Q̄M̄∆JTY

V` ≡
1 + δ`
n2

Y TJ∆

(
[Φ]`,·,· +D`

Ψ −
n

n`
(D`Θ + ΘD`)

)
∆JTY

where J = [j1, . . . , jk] ∈ Rn×k with [j`]i = δxi∼µ`
, Φ =

(Ik − Ψ̃)−1Φ̃ ∈ Rk×k×k,3 Ψ = (Ik − Ψ̃)−1Ψ̃ ∈ Rk×k,
D` = diag(Ψ·,`) ∈ Rk×k, D`

Ψ = diag(n
2(1+δ·)
n2
·

Ψ`,·) ∈
Rk×k, ∆ = diag((1 + δ·)

−1), and

Θ = M̄TQ̄M̄

Φ̃ =

{
M̄T
i Q̄C̄lQ̄M̄j

1 + δl

}
1≤l,i,j≤k

Ψ̃ =

{
nj
n2

tr Q̄C̄iQ̄C̄j
(1 + δi)(1 + δj)

}
1≤i,j≤k

.

Proof. Asymptotic means and covariances follow from a con-
centration inequality-based analysis. The central limit is then
obtained from a refined version of [18] adapted to our present
setting. Details are provided in the extended article [10].

As discussed previously, letting xl = σ(Wsl) for sl ∈ Rq
with q ∼ p such that sl ∈ C`αN (

√
c` · ), σ(·) 1-Lipschitz

and W ∈ Rp×q with ‖W‖ ≤ 1 (thereby ensuring that xl ∈
C`αN (

√
c` · )), S(x) is the output of an ELM. The asymptotic

statistics of S(x) in Theorem 2 therefore directly translate in
terms of simple neural network performances.

3Here we understand the product AB for A ∈ Rk×k and B ∈ Rk×k×k

by [AB]abc =
∑

d AadBdbc.
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0
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10−3 10−1 101 103

Simulation
Theory

σ(t) = ReLU(t) σ(t) = erf(t)

Fig. 1. Scores [S(x)]1 (blue dashed) and [S(x)]2 (blue solid)
of 2-class MNIST ELM as a function of regularization z ∈
[10−4, 104] (digits 3 for C1 and 8 for C2) for x ∈ C1, versus
theory (red dashed and solid). Based on n = 2048 samples,
p = q = 784, W random unitary.
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10−3 10−1 101 103

Simulation
Theory

σ(t) = ReLU(t) σ(t) = erf(t)

Fig. 2. Scores [S(x)]1 (blue dashed) and [S(x)]2 (blue solid)
of Gaussian 2-mixture ELM as a function of z ∈ [10−4, 104]
(C1 ≡ N (0, Ip) and C2 ≡ N (0, 2Ip)) for x ∈ C1, versus
theory (red dashed and solid). Based on n = 4096 samples,
p = q = 256, W random unitary.

Figure 1 provides the simulated S(x) ∈ R2 versus theo-
retical average S̄` output of an ELM for 2-class (C1, C2) clas-
sification with σ(t) = ReLU(t) = max(t, 0) and σ(t) =

erf(t) = 2√
π

∫ t
0
e−u

2

du, W random unitary, and sl extracted
from the MNIST handwritten digits dataset [19]. Here Y ∈
Rn×k is defined by Yl` = δsl∈C` . Note the accurate fit be-
tween theory and practice, suggesting that the MNIST data
are conveniently modelled as concentrated random vectors.

Figure 2 proceeds similarly with Gaussian sl ∼ N (0, α`Ip)
with α` ∈ {1, 2} according to the class. Being non-linearly
separable classes, a straightforward application of Theorem 2
ensures that both classes are non-discriminable for σ(t) such
that σ(−t) = −σ(t), which Figure 2 visually confirms; in-
deed, for such symmetric σ, for all `, M̄` = E[σ(Wsl)] = 0
where sl ∼ N (0, α`Ip), and we thus find that S̄` = 0 indeed
not allowing for class discrimination.



4. REFERENCES

[1] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho,
S. Ganguli, and Y. Bengio, “Identifying and attack-
ing the saddle point problem in high-dimensional non-
convex optimization,” in Advances in neural informa-
tion processing systems, 2014, pp. 2933–2941.

[2] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous,
and Y. LeCun, “The loss surfaces of multilayer net-
works,” in Artificial Intelligence and Statistics, 2015,
pp. 192–204.

[3] J. Pennington and Y. Bahri, “Geometry of neural net-
work loss surfaces via random matrix theory,” in Inter-
national Conference on Machine Learning, 2017, pp.
2798–2806.

[4] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Ex-
act solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks,” arXiv preprint
arXiv:1312.6120, 2013.

[5] C. Louart and R. Couillet, “Harnessing neural networks:
a random matrix approach,” in (submitted to) IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP’17), New Orleans, USA, 2017.

[6] C. Louart, Z. Liao, and R. Couillet, “A random matrix
approach to neural networks,” (in Press) Annals of Ap-
plied Probability, 2017.

[7] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme
learning machine: theory and applications,” Neurocom-
puting, vol. 70, no. 1, pp. 489–501, 2006.

[8] M. Ledoux, The concentration of measure phenomenon.
American Mathematical Soc., 2005, no. 89.

[9] R. Vershynin, High dimensional probability, 2017.

[10] C. Louart, R. Couillet, and F. Benaych-Georges, “Sam-
ple covariance of concentrated random vectors,” (in
preparation).

[11] T. Tao, Topics in random matrix theory. American
Mathematical Soc., 2012, vol. 132.

[12] R. Couillet and M. Debbah, Random Matrix Methods
for Wireless Communications. NY, USA: Cambridge
University Press, 2011.

[13] Z. D. Bai and J. W. Silverstein, Spectral analysis of large
dimensional random matrices, 2nd ed. New York, NY,
USA: Springer Series in Statistics, 2009.

[14] F. Benaych-Georges and R. R. Nadakuditi, “The singu-
lar values and vectors of low rank perturbations of large
rectangular random matrices,” Journal of Multivariate
Analysis, vol. 111, pp. 120–135, 2012.

[15] F. Benaych-Georges and R. Couillet, “Spectral analysis
of the gram matrix of mixture models,” ESAIM: Prob-
ability and Statistics, vol. 20, pp. 217–237, 2016. [On-
line]. Available: http://dx.doi.org/10.1051/ps/2016007

[16] J. A. Suykens and J. Vandewalle, “Least squares sup-
port vector machine classifiers,” Neural processing let-
ters, vol. 9, no. 3, pp. 293–300, 1999.

[17] R. C. Zhenyu Liao, “A large dimensional analysis of
least squares support vector machines,” (submitted to)
Journal of Machine Learning Research, 2017.

[18] S. Chatterjee, “Fluctuations of eigenvalues and second
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