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ABSTRACT 

This paper explores the use of multi-view features and their 

discriminative transforms in a convolutional deep neural 

network (CNN) architecture for a continuous large 

vocabulary speech recognition task. Mel-filterbank energies 

and perceptually motivated forced damped oscillator 

coefficient (DOC) features are used after feature-space 

maximum-likelihood linear regression (fMLLR) 

transforms, which are combined and fed as a multi-view 

feature to a single CNN acoustic model. Use of multi-view 

feature representation demonstrated significant reduction in 

word error rates (WERs) compared to the use of individual 

features by themselves. In addition, when articulatory 

information was used as an additional input to a fused deep 

neural network (DNN) and CNN acoustic model, it was 

found to demonstrate further reduction in WER for the 

Switchboard subset and the CallHome subset (containing 

partly non-native accented speech) of the NIST 2000 

conversational telephone speech test set, reducing the error 

rate by 12% relative to the baseline in both cases. This work 

shows that multi-view features in association with 

articulatory information can improve speech recognition 

robustness to spontaneous and non-native speech.  
Index Terms— multi-view features, feature combination, 

large vocabulary continuous speech recognition, robust speech 

recognition, articulatory features 
 

1. INTRODUCTION 
 

Spontaneous speech typically contains a significant amount 

of variation, which makes it difficult to model in automatic 

speech recognition (ASR) systems. Such variability stems 

from varying speakers, pronunciation variations, speaker 

stylistic differences, varying recording conditions and many 

other factors. Recognizing words from conversational 

telephone speech (CTS) can be quite difficult due to the 

spontaneous nature of speech, its informality, speaker 

variations, hesitations, disfluencies etc. The Switchboard 

and Fisher [1] data collections are large collection of CTS 

datasets that have been used extensively by researchers 

working on conversational speech recognition [2, 3, 4, 5, 6]. 

Recent trends in speech recognition [7, 8, 9] have 

demonstrated impressive performance on Switchboard and 

Fisher data. 

Deep neural network (DNN) based acoustic modeling has 

become the state-of-the-art in automatic speech recognition 

(ASR) systems [10, 11]. It has demonstrated impressive 

performance gains for almost all tried languages and 
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acoustic conditions. Advanced variants of DNNs, such as 

convolutional neural nets (CNNs) [12], recurrent neural 

nets (RNNs) [13], long short-term memory nets (LSTMs) 

[14], time-delay neural nets (TDNNs) [15, 29], VGG-nets 

[8], have significantly improved recognition performance, 

bringing them closer to human performance [9]. Both 

abundance of data and sophistication of deep learning 

algorithms have symbiotically contributed to the 

advancement of speech recognition performance. The role 

of acoustic features has not been explored in comparable 

detail, and their potential contribution to performance gains 

is unknown. This paper focuses on acoustic features and 

investigates how their selection improves recognition 

performance using benchmark training datasets: 

Switchboard and Fisher, when evaluated on the NIST 2000 

CTS test set [2].  

We investigated a traditional CNN model and explored 

the following:  

(1) Use of multiple features both in isolation and in 

combination.  

(2) Explored different ways of using the feature space 

maximum-likelihood regression (fMLLR) transform, 

where we tried (a) learning the fMLLR transforms 

directly using the filterbank features and (b) learning the 

fMLLR transform on the cepstral version of the features 

and then performing inverse discrete cosine transform 

(IDCT) on the fMLLR features to generate the fMLLR 

version of filterbank features.  

(3) Investigated the use of articulatory features, where the 

features represent a time series definition of how the 

vocal tract shape and constrictions change over time.  
 

Our experiments demonstrated that the use of feature 

combinations helped to improve performance over 

individual features in isolation and over traditionally used 

mel-filterbank (MFB) features. Articulatory features were 

found to be useful for improving recognition performance 

on both Switchboard and CallHome subsets of the NIST 

2000 CTS test set. These findings indicate that the use of 

better acoustic features can help improve speech 

recognition performance when using standard acoustic 

modeling techniques, and can demonstrate performance as 

good as those obtained from more sophisticated acoustic 

models that exploit temporal memory. For the sake of 

simplicity, we used a CNN acoustic model in our 

experiment, where the baseline system’s performance is 

directly comparable to the state-of-the-art CNN 

performance reported in [8]. We expect our results using the 

CNN to carry over into other neural network architectures 

as well. 



The outline of the paper is as follows. In Section 2 we 

present the dataset and the recognition task. In Section 3 we 

describe the acoustic features and the articulatory features 

that were used in our experiments. Section 4 presents the 

acoustic and language models used in our experiments, 

followed by experimental results in Section 5 and 

conclusion and future directions in Section 6. 
 

2. DATA AND TASK 
 

The acoustic models in our experiments were trained using 

the CTS Switchboard (SWB) [16] and Fisher (FSH) 

corpora. We first investigated contributions of the features 

on models trained only with the SWB dataset, where the 

training data consisted of ~360 hours of speech data. We 

then evaluated the contributions of the features using 

acoustic models trained with a combination of both SWB 

and FSH (~2000 hours). The models were evaluated using 

the NIST 2000 CTS test set, which consists of 2.1 hours 

(21.4K words, 40 speakers) of SWB audio and 1.6 hours 

(21.6K words, 40 speakers) of the CallHome (CH) audio. 

The language model training data included 3M words from 

Switchboard, CallHome, and Switchboard Cellular 

transcripts, 20M words from Fisher transcripts, 150M 

words from Hub4 broadcast news transcripts and language 

model training data, and 191M words of “conversational” 

text retrieved from the Web by searching for conversational 

n-grams extracted from the CTS transcripts [25]. A 4-gram 

language model (LM) was generated based on word 

probability estimates from a SuperARV language model, 

which is a class-based language model with classes derived 

from Constraint Dependency Grammar parses [26]. For first 

pass decoding the 4-gram LM was pruned to improve 

efficiency, and the full 4-gram LM was used to rescore 

lattices generated from the first pass. 

3. FEATURES 

We used mel-filterbank energies (MFBs) as the baseline 

feature, where the features were generated using the 

implementation distributed with the Kaldi toolkit [17].   The 

second acoustic feature was Damped Oscillator 

Coefficients (DOCs) [18]. The DOC features model the 

auditory hair cells using a bank of forced damped 

oscillators, where gammatone filtered band-limited 

subband speech signals are used as the forcing function. The 

oscillation energy from the damped oscillators was used as 

the DOC features after power-law compression.  

We performed the fMLLR transform on the acoustic 

features, where we trained Gaussian Mixture Models 

(GMMs) to generate alignments on the training dataset to 

learn the fMLLR transform for the feature sets. We 

investigated two approaches: (1) we directly learned the 

fMLLR transforms on the 40-dimensional filterbank 

features, and (2) we investigated learning the fMLLR 

transform using the cepstral version of the features. The 

cepstral version of the features helps decorrelate the 

features, which in turn adheres to the diagonal covariance 

assumption of the GMMs. In (2) the fMLLR transform was 

learned using 40 dimensional cepstral features (using all the 

cepstral dimensions extracted from 40 dimensional 

filterbanks). After the fMLLR transform was performed, an 

IDCT of the features was obtained to generate the fMLLR 

version of filterbank features. 

The articulatory features were estimated using the CNN 

system described in [19, 20], where the CNN performs 

speech-to-articulatory inversion or simply speech-

inversion. During speech-inversion, the acoustic features 

extracted from the speech signal, in this case modulation 

features [19], are used to predict the articulatory 

trajectories. The articulatory features contain time domain 

articulatory trajectories, with eight dimensions reflecting: 

glottal aperture, velic opening, lip aperture, lip protrusion, 

tongue tip location and degree, tongue body location and 

degree. More details regarding the articulatory features and 

their extraction are provided in [19]. 

4. RECOGNITION SYSTEM 

We trained CNN acoustic models for the speech recognition 

tasks. To generate the alignments necessary for training the 

CNN system, a Gaussian Mixture Model - Hidden Markov 

Model (GMM-HMM) based acoustic model was first 

trained with flat-start, which was used to produce the 

senone labels. Altogether, the GMM-HMM system 

produced 5.6K context-dependent (CD) states for the SWB 

training set. A fully connected DNN model was then trained 

using MFB features, which in turn was used to generate the 

senone alignments to train the baseline and other acoustic 

models presented in this work. The input features to the 

acoustic models were formed using a context window of 15 

frames (7 frames on either side of the current frame).  

The acoustic models were trained by using cross-entropy 

(CE) followed by sequence training using maximum mutual 

information (MMI) criterion [17, 21]. For the CNN model, 

200 convolutional filters of size 8 were used in the 

convolutional layer, and the pooling size was set to 3 

without overlap. The subsequent, fully connected network 

had five hidden layers, with 2048 nodes per hidden layer, 

and the output layer included as many nodes as the number 

of CD states for the given dataset. The networks were 

trained using an initial four iterations with a constant 

learning rate of 0.008, followed by learning-rate halving 

based on the cross-validation error decrease. Training 

stopped when no further significant reduction in cross-

validation error was noted or when cross-validation error 

started to increase. Backpropagation was performed using 

stochastic gradient descent with a mini-batch of 256 

training examples. 

In this work, we investigated a modified deep neural 

network architecture to jointly model the acoustic and the 

articulatory spaces, as shown in Figure 1. In this modified 

architecture, two parallel input layers are used to accept 

acoustic features and articulatory features. The input layer 

tied to the acoustic feature consists of a convolutional layer, 

with 200 filters and the input layer tied to the articulatory 

features is a feed-forward layer with 100 neurons. The 

feature maps from the convolutional layer and the outputs 

from the feed-forward layer are fed to a fully connected 



DNN consisting of 5 hidden layers and 2048 neurons in 

each layer, as shown in figure 1. 
 

 
Figure 1. Fused CNN-DNN acoustic model. The convolution 

input layer accepts acoustic features as input and the feed-

forward input layer accepts articulatory features (vocal tract 

constriction (TV) variables) as input. 
 

 

5. RESULTS 
 

We initially validated the performance of the features 

(MFB, DOC and TVs) using the 360 hours SWB training 

dataset. The baseline DNN and CNN models had six and 

five hidden layers respectively, with 2048 neurons in each 

layer, and were trained with MFB features and its fMLLR 

transformed version (MFB+fMLLR). The NIST RT-04 

dev04 dataset (3 hour test set from Fisher, containing 36 

conversations) [2] was used as the cross-validation set 

during the acoustic model training step. Table 1 presents the 

word error rates (WER) from the baseline CNN model 

trained with the SWB data when evaluated on the NIST 

2000 CTS test set, for both cross-entropy (CE) training and 

sequence training (ST) using MMI. Table 1 also shows the 

results obtained from the DOC features with and without a 

fMLLR transform. We present results from ST as they were 

found to be always better than the results CE training. We 

explored learning the fMLLR transform directly from the 

filterbank features (MFB_fMLLR and DOC_fMLLR) and 

learning the fMLLR transforms on the full dimensional 

cepstral versions of the features, applying the transform and 

then performing IDCT (MFB+fMLLR and DOC+fMLLR).  
 

Table 1. WER from the 360 hours SWB trained ST acoustic 

models when evaluated on the NIST 2000 CTS test set, for 

MFB and DOC features respectively. 

Feature Model WER SWB WER CH 

MFB DNN 13.5 26.2 

DOC DNN 12.6 23.7 

MFB_fMLLR DNN 11.8 22.2 

MFB+fMLLR DNN 11.6 21.9 

DOC_fMLLR DNN 12.3 23.2 

DOC+fMLLR DNN 12.0 22.9 

MFB+fMLLR CNN 11.3 21.8 

DOC+fMLLR CNN 11.3 20.6 

 

Table 1 shows that the performance of fMLLR 

transforms learned from the cepstral version of the 

features are better than the ones directly from the 

filterbank features, which is expected, as the cepstral 

features are uncorrelated, which adheres to the diagonal 

covariance assumption of the GMM models used to learn 

those transforms. Table 1 demonstrates that the fMLLR 

transformed features always performed better than the 

features without fMLLR transform. Also, the CNN models 

always gave better results, confirming similar observations 

from studies reported earlier [8]. Also, note that Table 1 

shows that the DOC features performed slightly better than 

the MFB features after the fMLLR transform, where the 

performance improvement was more pronounced for the 

CH subset of the NIST 2000 CTS test set.  
As a next step, we investigated the efficacy of feature 

combination and focused only on the CNN acoustic models. 

We appended the articulatory features (TVs) extracted from 

the SWB training set, dev04 and NIST 2000 CTS test sets, 

and combined them with MFB+fMLLR and DOC+fMLLR 

features, respectively. Finally, we combined the 

MFB+fMLLR and DOC+fMLLR features and added the 

TVs to them. Table 2 presents the WERs obtained from 

evaluating all the models trained with different 

combinations of features. Note that all models using TVs 

used the fused CNN-DNN (f-CNN-DNN) architecture 

shown in Figure 1, for jointly modeling the dissimilar 

acoustic and articulatory spaces. When combining the 

MFB+fMLLR and DOC+fMLLR features, we trained a 

CNN model instead. The number of convolutional filters in 

all the experiments was kept at 200, and only the patch size 

was increased from eight to twelve in the case of combined 

acoustic features (MFB+fMLLR + DOC+fMLLR) as 

opposed to the individual acoustic features (i.e., 

MFB+fMLLR or DOC+fMLLR).  
 

Table 2. WER from the 360 hours SWB trained ST acoustic 

model when evaluated with the NIST 2000 CTS test set, for 

different feature combinations. 

Feature Model WER SWB WER CH 

MFB+fMLLR  

+ TV 

f-CNN-DNN 11.2 20.8 

DOC+fMLLR  

+ TV 

f-CNN-DNN 11.0 20.5 

MFB+fMLLR  

+ DOC+fMLLR 

CNN 10.7 20.4 

MFB+fMLLR  

+ DOC+fMLLR  

+TV 

f-CNN-DNN 10.5 19.9 

 

Table 2 shows that the use of articulatory features helped 

to lower the WER in all the cases. The DOC feature was 

always found to perform slightly better than the MFBs and 

the best results were obtained when all the features were 

combined together, indicating the benefit of using multi-

view features. Note that only 100 additional neurons were 

used to accommodate the TV features, hence all the models 

were of comparable sizes. The benefit of the articulatory 

features stemmed from the complementary information that 

they contain (reflecting degree and location of articulatory 

constrictions in the vocal tract), as demonstrated by earlier 

studies [22-24]. Overall the f-CNN-DNN system trained 

with the combined feature set, MFB+fMLLR + 

DOC+fMLLR + TV, demonstrated a relative reduction in 

WER of 7% and 9% compared to the MFB+fMLLR CNN 

baseline for SWB and CH subsets of the NIST 2000 CTS 



test set. Table 1 and 2 also demonstrates that sequence 

training always gave additive performance gain over cross-

entropy training, supporting the in [8, 21].  

As a next step, we focused on training the acoustic 

models using the 2000-hour SWB+FSH CTS data, focusing 

on the CNN acoustic models and multi-view features. Note 

that the MFB DNN baseline model was used to generate the 

alignments for the FSH part of the 2000 hours CTS training 

set and as a consequence the number of senone labels 

remained the same as the 360-hour SWB models. Table 3 

presents the results from the 2000 hours CTS trained 

models. The model configurations and their parameter size 

were kept the same as the 360-hour SWB models. 

Figure 3 shows that the use of the additional FSH training 

data resulted in significant performance improvement for 

both SWB and the CH subsets of the NIST 2000 CTS test 

set. Adding the FSH dataset resulted in relative WER 

reduction of 4.4% and 12% respectively for SWB and CH 

subsets of the NIST 2000 CTS test set, using MFB+fMLLR 

features. Similar improvement was observed from the 

DOC+fMLLR features as well, where 8% and 12% relative 

reduction in WER for SWB and CH subsets was observed 

when FSH data was added to the training data. Note that the 

CH subset of the NIST 2000 CTS test set was more 

challenging than the SWB subset, as it contains non-native 

speakers of English, hence introducing accented speech into 

the evaluation set. The use of articulatory features helped to 

reduce the error rates for both SWB and CH test sets, 

indicating their robustness to model spontaneous speech in 

both native (SWB) and non-native (CH) speaking styles.  

The FSH corpus contains speech from quite a diverse set of 

speakers, helping to reduce the WER of the CH subset more 

significantly than the SWB subset, a trend reflected in 

results reported in the literature [8]. 
 

Table 3. WER from the 2000 hours SWB+FSH trained 

acoustic model when evaluated on the NIST 2000 CTS test 

set, for different feature combinations. 

Feature Model WER SWB WER CH 

MFB+fMLLR  CNN 10.8 19.2 

DOC+fMLLR  CNN 10.4 18.1 

MFB+fMLLR  

+ DOC+fMLLR 

CNN 9.8 17.2 

MFB+fMLLR  

+ DOC+fMLLR  

+TV 

f-CNN-DNN 9.5 16.9 

 

Table 3 demonstrates the benefit of using multi-view 

features, where a CNN trained with MFB+fMLLR and 

DOC+fMLLR resulted in reducing the WER by 6% and 5% 

relatively, for SWB and CH evaluation sets respectively, 

when compared to the best single feature system 

DOC+fMLLR. When the articulatory features in the form 

of the TVs were used in addition to the MFB+fMLLR and 

DOC+fMLLR features in a f-CNN-DNN model, the best 

performance from a single acoustic model was obtained, 

which produced a relative WER reduction of 3% and 2% 

for SWB and CH evaluation sets respectively, compared to 

the CNN acoustic model trained with MFB+fMLLR and 

DOC+fMLLR features.  

Table 4 shows the system fusion results after dumping 

2000-best lists from the rescored lattices from each 

individual system of different front-end features with 

fMLLR, i.e., MFB, DOC, MFB+DOC, MFB+DOC+TV, 

then conducting M-way combination of the subsystems 

using N-best ROVER [27] implemented in SRILM [28].  In 

this system fusion experiment, all subsystems have equal 

weights for N-best ROVER. As can be seen from the table, 

N-best ROVER based 2-way and 3-way system fusion 

produced a further 2% and 4% relative reduction in WER 

compared to the best single system (MFB+fMLLR + 

DOC+fMLLR + TV), for SWB and CH evaluation sets 

respectively. Note that the first row of Table 4 is the last 

row of Table 3, i.e., the best single system. The last row 4-

way fusion is from combining the 4 individual systems 

presented in Table 3. 
 

Table 4. WER from system fusion experiments. 

System Fusion WER SWB WER CH 

Best Single 

System 

9.5 16.9 

Best 2-way 

fusion 

  

9.3 

[MFB+DOC, 

MFB+DOC+TV] 

16.4 

[MFB+DOC, 

MFB+DOC+TV] 

Best 3-way 

fusion 

9.3 

[MFB, 

MFB+DOC, 

MFB+DOC+TV] 

16.3 

[MFB, DOC, 

MFB+DOC+TV] 

4-way fusion 9.3 16.7 
 

6. CONCLUSION 
 

We reported the results exploring multiple features for ASR 

on English CTS data. We observed that the fMLLR 

transform helped reduce the WER of the baseline system 

significantly. We observed that using multiple acoustic 

features helped in improving the overall accuracy of the 

system. Use of robust features and articulatory features 

significantly reduced the WER for the more challenging 

CallHome subset of the NIST 2000 CTS evaluation set, 

with accented speech in that subset. We developed a fused-

CNN-DNN architecture, where input convolution was only 

performed on the acoustic features and the articulatory 

features were process by a feed-forward layer. We found 

this architecture effective for combining acoustic features 

and articulatory features. The robust features and 

articulatory features capture complementary information, 

and the addition of them resulted in the best single system 

performance, with 12% relative reduction of WER on SWB 

and CH evaluation sets respectively, compared to the 

MFB+fMLLR CNN baseline. 

Note that in this study the language model has not been 

optimized. Future studies should investigate RNN or other 

neural network-based language modeling techniques that 

are known to perform better than word n-gram LMs. Also, 

advanced acoustic modeling, through the use of time-

delayed neural nets (TDNNs), long short-term memory 

neural nets (LSTMs), and the VGG nets, should also be 

explored as their performance has been mostly reported 

using MFB features, and the use of multi-view features can 

help further improve their performance. 
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