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ABSTRACT

Linear Least Squares is a very well known technique for parame-
ter estimation, which is used even when sub-optimal, because of its
very low computational requirements and the fact that exact knowl-
edge of the noise statistics is not required. Surprisingly, bounding the
probability of large errors with finitely many samples has been left
open, especially when dealing with correlated noise with unknown
covariance. In this paper we analyze the finite sample performance
of the linear least squares estimator under sub-Gaussian martingale
difference noise. In order to analyze this important question we used
concentration of measure bounds. When applying these bounds we
obtained tight bounds on the tail of the estimator’s distribution. We
show the fast exponential convergence of the number of samples re-
quired to ensure a given accuracy with high probability. We provide
probability tail bounds on the estimation error’s norm. Our analysis
method is simple and uses simple L∞ type bounds on the estima-
tion error. The tightness of the bounds is tested through simulation.
The proposed bounds make it possible to predict the number of sam-
ples required for least squares estimation even when least squares is
sub-optimal and used for computational simplicity. The finite sam-
ple analysis of least squares models with this general noise model is
novel.

Index Terms— Estimation; linear least squares; non-Gaussian;
concentration bounds; finite sample; large deviations; confidence
bounds; martingale difference sequence

1. INTRODUCTION

1.1. Related Work

Linear least squares estimation has numerous applications in many
fields. For instance, it was used in soft-decision image interpolation
applications in [1] and [2]. Another field that uses linear least
squares is source localization using signal strength, as in [3]. In that
paper, weighted linear least squares was used to find the distance of
the received signals given the strength of the signals received in the
sensors and the sensors’ locations. Weighted least squares estimators
were also used in the field of diffusion MRI parameters estimation
[4]. It was shown that the weighted linear least squares approach has
significant advantages because of its simplicity and good results. A
standard analysis of estimation problems calculates the Cramer-Rao
bound (CRB) and uses the asymptotic normality of the estimator.

∗This work is part of the first author’s Ph.D. thesis. This work is partially
supported by ISF grant 903/2013.

This type of analysis is asymptotic by nature. For some applica-
tions, see for instance [5] where direction of arrival problems were
analyzed in terms of the CRB. In [6] the ML estimator and MUSIC
algorithms were studied and the CRB was calculated. However,
as is well known, the Central Limit Theorem, and the Gaussian
approximation are not valid in the case of rare large errors. In many
applications the performance is not impacted by small errors, but
large errors can lead to catastrophic results. One such example is
in wireless communication channel estimation, where the accuracy
of the channel estimation should suffice for the given modulation.
However rare events where the estimation is significantly far away
can lead to total failure. Furthermore, in such applications, training
is short and we cannot rely on asymptotic large deviation results.
Hence we need tight upper bounds on the L∞ norm of the error.
The noise model differs accross applications of least squares and
other optimization methods. Rather than the Gaussian model a
Gaussian mixture is used in many applications. For instance, in
[7] a Gaussian mixture model of a time-varying autoregressive pro-
cess was assumed and analyzed. The Gaussian mixture model was
used to model noise in underwater communication systems in [8].
Wiener filters in Guassian mixture signal estimation were analyzed
in [9]. In [10] a likelihood based algorithm for Gaussian mixture
noise was devised and analyzed in the terms of the CRLB. In [11]
a robust detection technique using Maximum-Likelihood estima-
tion was proposed for an impulsive noise modeled as a Gaussian
mixture. In this work we consider sub-Gaussian noise, which is
a general non-Gaussian noise framework. The Gaussian mixture
model, for instance, is sub-Gaussian and our results are valid for this
model. In the case of Gaussian noise, least squares coincides with
the maximum likelihood estimator. Still, in many cases of interest
least squares estimation is used in non-Gaussian noise as well for
computational simplicity. Specifically the sub-Gaussian noise model
is of special interest in many applications.
In many cases the noise model used is not i.i.d but the noise is
correlated. An important case is that of martingale difference noise.
This noise model is quite general and is used in various fields. For
example the first order ARCH models introduced in [12] are pop-
ular in economic theory. Moreover, [13] analyzed similar least
squares models with applications in control theory. The asymptotic
properties of these models have been analyzed in various papers,
for example [14–16]. The results show the strong consistency of
the least squares estimator under martingale difference noise and for
autoregressive models. The least squares efficiency in an autore-
gressive noise model was studied in [17]. However, finite sample
results were not given.
The least squares problem is well studied. The strong consistency of
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the linear least squares was proved in [18]. Asymptotic bounds for
fixed size confidence bounds were stated for example in [19]. In the
past few years, the finite sample behavior of least squares problems
has been studied in [20–23]. Some of these results also analyze
regularized least squares models. These results only studied the i.i.d
noise case. In this work we extend these results to the sub-Gaussian
MDS noise case which is much more general. Beyond the theoreti-
cal results we also provide simulated examples of the bounds for the
problem of channel estimation with a random mixing matrix.

1.2. Contribution

In this paper we provide a finite sample analysis of linear least
squares problems under sub-Gaussian martingale difference se-
quence (MDS) noise. We provide L∞ error bounds that can be used
to compute the confidence interval in a non-parametric way (i.e.,
without knowing the exact distribution) of the estimation error. The
main theorem of this paper allows us to compute the performance of
linear least squares under very general conditions. Since the linear
least squares solution is computationally simple it is used in practice
even when it is sub-optimal. The analysis of this paper allows the
designer to understand the loss due to the computational complexity
reduction without the need for massive simulations. We extend the
results of [24] in two significant ways. The first is allowing the
mixing matrix to be a general bounded elements matrix. More im-
portantly, we extend the analysis to the case of sub-Gaussian MDS
noise. The sub Gaussian martingale noise covers many examples
of correlated noise, and specifically the case of an interfering zero
mean signal which passes through a finite impulse response channel.
Hence we are able to predict large error behavior. This provides
finite sample analysis under a very general noise framework. While
the bounds are not tight, they are still useful and pave the way to
further analyses which may tighten these bounds even further. The
fact that we only need knowledge of a sub-Gaussianity parameter of
the noise allows us to use these bounds when the noise distribution
is unknown.

2. PROBLEM FORMULATION

Consider a linear model with additive noise

x = Aθ0 + v (1)

where x ∈ RN×1 is our output,A ∈ RN×p is a known matrix with
bounded random elements, θ0 ∈ Rp is the estimated parameter and
v ∈ RN×1 is a noise vector with independent and sub-Gaussian el-
ements1. N indicates the number of samples used in the model.
Many real world noise models are sub-Gaussian including Gaus-
sians, finite Gaussian mixtures, all the bounded variables, and any
combination of the above. Many real world applications are subject
to such noise.
The least squares estimator with N samples is given by

θ̂N0 =
(
ATA

)−1

ATx =

(
1

N

N∑
n=1

ana
T
n

)−1

1

N

N∑
n=1

aTnxn

(2)
where aTn , n = 1 . . . N are the rows of A and xn, n =

1 . . . N are the data samples. When E (v) = 0, E
(
θ̂N0

)
= θ0 and

1For simplicity we only consider the real case. The complex case is simi-
lar with minor modifications.

the estimator is unbiased.
We want to study the tail distribution of

∥∥∥θ̂N0 − θ0∥∥∥
∞

or more
specifically to obtain bounds of the form

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
< ε (3)

as a function of N . Furthermore, given r, ε we want to calculate the
number of samples needed N (r, ε) to achieve the above inequality.
We analyze the case whereA is random with bounded elements.
Throughout this paper we use the following mathematical notations:

Definition 2.1.

1. Let B ∈ Rp×p be a square matrix; we define the operators
λmax (B) and λmin (B) to give the maximal and minimal
eigenvalues ofB respectively.

2. LetC be a matrix. The spectral norm for matrices is given by
‖C‖ .=

√
λmax (CTC).

3. A random variable v with E (v) = 0 is called sub-Gaussian
if its moment generating function exists and E (exp (sv)) ≤
exp

(
s2R2

2

)
[25]. The minimal R that satisfies this inequal-

ity is called the sub-Gaussian parameter of the random vari-
able v and we say that v is sub-Gaussian with parameter R.

Remark 2.2. Assume that x ∼ N
(
0, σ2

)
, then the moment generat-

ing function of x is M(s) = E (exp (sx)) = exp
(
s2σ2

2

)
. There-

fore, by definition 3 x is also sub-Gaussian with parameter σ.

3. MAIN RESULT

In this section we formulate the main result of this paper, discuss it
and provide a proof outline.
We make the following assumptions regarding the problem. These
assumptions are mild and cover a very large set of linear least squares
problems.

A1: E (vn) = 0 ∀1 ≤ n ≤ N .

A2: P
(
rank

(
ATA

)
= p
)

= 1

A3: P (|ani| ≤ α) = 1 ∀n = 1 . . . N ∀i = 1 . . . p

A4: For all N > 0 there exists M ∈ Rp×p such that M =
1
N
E
(
ATA

)
. We denote σmax

.
= λmax (M) and σmin =

λmin (M).

A5: E (vn|Fn−1) = 0. Where Fn−1 is a flirtation, vn are inde-
pendent ofA.

A6: The martingale difference sequence is δ sub-Gaussian; i.e.

E (svn|Fn−1) ≤ e
s2δ2

2 .

Assumptions A1-A2 are standard in least squares theory. Assump-
tion A1 assumes that our design is correct. Assumption A2 ensures
that the least squares estimator exists. Assumptions A3 and A4 are
mild and achievable by normalizing each row of the mixing matrix
with the proper scaling of the sub-Gaussian parameter. Assump-
tion A5 means that the noise sequence is a martingale difference
sequence and assumption A6 assumes that the noise sequence is
sub-Gaussian. Note that the set of assumptions is valid for any
type of martingale difference zero mean sub-Gaussian noise model,
which is a very wide family of distributions.



The main theorem provides bounds on the convergence rate of
the finite sample least squares estimator to the real parameter. The
theorem provides the number of samples needed so that the distance
between the estimator and the real parameter will be at most r with
probability 1− ε.

Theorem 3.1. (Main Theorem)
Letx be defined as in (1) and assume assumptions A1-A6. Let ε > 0

and r > 0 be given and θ̂N0 and θ0 be defined as previously, then
∀N > N (r, ε)

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
< ε (4)

where
N (r, ε) = max {N1 (r, ε) , Nrand (ε)} , (5)

N1 (r, ε) =
8α2δ2

r2σ2
min

log
2p

ε
(6)

and

Nrand (ε) =
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
2p

ε
. (7)

3.1. Discussion

The importance of this result is that it gives an easily calculated
bound on the number of samples needed for linear least squares
problems. It shows a sharp convergence in probability as a func-
tion of N , and shows that the number of samples is O

(
1
r2

log 1
ε

)
.

Moreover, the result handles the case where the noise is a martingale
difference sequence. This is the first finite sample analysis result for
least squares under this noise assumption.
The results in this work are given with an L∞ norm. The L∞ results
can give confidence bounds for every coordinate of the parameter
vector θ0. Results for other norms can be achieved as well using the
relationships between norms.

We start by stating two auxiliary lemmas

Lemma 3.2. Let x be defined as in (1). Assume A1-A6 hold. Fur-
thermore, let θ̂N0 be defined in (2) and let r > 0 be given, then

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)

≤ P

(∣∣∣∣∣ 1
N

N∑
n=1

anivn

∣∣∣∣∣ > r

λmax

(
( 1
N

ATA)−1
)
)
.

(8)

Proof. This lemma can be proven by a straightforward computation
and the proof is left to the reader.

Lemma 3.3. Under assumptions A2-A4 and for allN ≥ Nrand (ε′)

P

(
λmax

(
1

N

(
ATA

))−1

≥ 2

σmin

)
≤ ε′, (9)

where

Nrand
(
ε′
)

=
4

3

(6σmax + σmin)
(
pα2 + σmax

)
σ2
min

log
( p
ε′

)
.

(10)

Proof. The proof is a generalization of the proof of theorem 4.1 in
[24]. It is omitted due to space limitations.

3.2. Prof Outline

Proof. We wish to study the term

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
. (11)

In order to do so we start by bounding each of the terms in the vector
separately and use a union bound approach to achieve theL∞ bound.
We start by analyzing the term

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)
. (12)

Using lemma 3.2 we achieve

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)

≤ P

(∣∣∣∣∣ 1
N

N∑
n=1

anivn

∣∣∣∣∣ > r

λmax( 1
N

ATA)−1

)
.

(13)

We define the set of events

Ψ1
.
=

{
X : λmax

(
1

N
ATA

)−1

≥ 2

σmin

}
. (14)

We want to study the number of samples required to achieve that
P (X ∈ Ψ1) ≤ ε

2
. In order to achieve this, we use lemma 3.3 with

parameter ε′ = ε
2

to find that ∀N > Nrand (ε)

P (X ∈ Ψ1) = P

(
λmax

(
1

N
ATA

)−1

≥ 2

σmin

)
≤ ε

2
. (15)

We denote

Definition 3.4. ci the i-th column ofA.

We now assume that X /∈ Ψ1. Under this assumption the fol-
lowing inequality holds

P
(∣∣∣(θ̂N0 − θ0)

0

∣∣∣ > r
)
≤ P

(
1

N
cTi v >

rσmin
2

)
. (16)

We denote by

Ψ2 (i)
.
=

{
X :

1

N
cTi v >

rσmin
2

}
. (17)

We now obtain a bound on the number of samples required to ensure
that

P (X ∈ Ψ2 (i)) = P

(
1

N
cTi v >

rσmin
2

)
≤ ε

2p
. (18)

We now outline a proof for a concentration result for a sub-
Gaussian martingale difference sequence using similar methods to
[26]. We begin by bounding the moment generating function. We
start by bounding E

(
exp

(
scTi v

))
and then we use Markov’s in-

equality. Applying assumption A3 and A6 we obtain

E
(

exp
(
scTi v

))
≤ E

(
exp

(
sα

N−1∑
n=1

vn

))
e
s2α2δ2

2 . (19)

Iterating this procedure yields

E
(

exp
(
scTi v

))
≤ exp

(
Ns2α2δ2

2

)
. (20)



Looking now at the original equation we use the Laplace method and
Markov’s inequality alongside equation (20) to achieve

P (X ∈ Ψ2 (i)) ≤ exp

(
N

2

(
s2α2δ2 − srσmin

))
(21)

Optimizing over s > 0 we achieve

P

(
cTi v >

Nrσmin
2

)
≤ exp

(
−Nr

2σ2
min

8α2δ2

)
. (22)

Choosing N > 8α2δ2

r2σ2
min

log 2p
ε

ensures that

P (X ∈ Ψ2 (i)) = P

(
1

N
cTi v >

rσmin
2

)
<

ε

2p
. (23)

We achieved a bound for each coordinate separately. The last step of
the proof is to use the union bound on these terms to achieve a bound
on the L∞ norm of the vector. We define

Ψ2
.
=

p⋃
i=1

Ψ2 (i) . (24)

Using the union bound we obtain ∀N > N (r, ε)

P (X ∈ Ψ2) ≤
p∑
i=1

P (X ∈ Ψ2 (i)) ≤ ε

2
. (25)

Using the union bound again we obtain P (X ∈ Ψ1 ∪Ψ2) ≤ ε.
This completes the proof.

4. SIMULATION RESULTS

Assume that we have a linear system with unknown parameters with
noise that is filtered using a finite impulse response system and a
sub-Gaussian signal. We can write

xn = aTnθ +

k∑
i=0

j (i)H (n− i) + w (n) . (26)

where j (i) is an i.i.d zero mean bounded signal for example a BPSK
signal. We denote η as the bound for j (i), i.e. P (j (i) ≤ η) = 1.
We also assume that H (n) is an unknown system. We now prove

that the noise sequence vn =
k∑
i=0

j (i)H (n− i) + w (n) is a zero

mean martingale difference, that it is sub-Gaussian and thus admits
assumptions A5 and A6. If so, we can use theorem 3.1 to calculate
the number of samples required to achieve a certain finite sample
performance for this interesting model.

E (vn|Fn−1) = E

(
k∑
i=0

j (i)H (n− i) + w (n) |Fn−1

)

= E

(
k∑
i=0

j (i)H (n− i) |Fn−1

)
+ E (wn|Fn−1)

= E

(
k∑
i=0

j (i)H (n− i) |Fn−1

)
= 0. (27)

The second equatlity follows from the independence of the random
variables w (n), j (n) and H (n). The next equality follows from

Fig. 1. Simulation results and martingale difference theorem bounds
for a sub-Gaussian martingale difference sequence noise with ε =
0.2, σmin = σmax = 10, δ = 4 and p = 2. The graph is for N as a
function of r.

the fact that w (n) is zero mean. The last equality follows from the
fact that E (j (n)) = 0. We now prove that the vn is sub-Gaussian.
We use the assumption that j (n) ≤ η and that H (n) and w (n) are
sub-Gaussian with parameter R1 and R2 respectively. Using these
facts with the property that j (k)H (n) is sub-Gaussian as they are
independent and j (i) ≤ η and the fact that linear combinations of
sub-Gaussian random variables is sub-Gaussian [25] we can con-
clude that vn is sub-Gaussian and admits assumption A6. We have
now proven that this example admits all the assumptions of theorem
3.1 and therefore we can use the theorem to bound the number of
samples needed to achieve a predefined performance. Fig 1. shows
the performance of the bound in this interesting case. We see that
while the bound is not tight, the overall performance is similar. This
example demonstrates the strengths of the results in this paper. Many
signal processing applications such as this example can be analyzed
using our results.

5. CONCLUDING REMARKS

In this paper we examined the finite sample performance of the L∞

error of the linear least squares estimator. We showed very fast con-
vergence of the number of samples required as a function of the
probability of the L∞ error. We showed that the number of samples
required to achieve a maximal deviation r with probability 1 − ε is
N ∼ O

(
1
r2

log 1
ε

)
. The main theorem deals with least squares in

very general noise models; therefore the bounds may be important in
many interesting applications. We used simulations to demonstrate
the results. Our simulation results suggest that the bounds given
in this paper have similar properties as the simulation results. We
showed that the interesting example of a finite impulse response fil-
tered interference with sub-Gaussian noise model can be modeled as
a sub-Gaussian martingale difference model in our setup and our the-
orem can give bounds on the number of samples required to achieve
the required performance in this important case. This result has sig-
nificant implications for the analysis of least squares problems in
communications and signal processing. We also believe that the Sub-
Gaussian parameter can be replaced with bounds on a few moments
of the distribution and can relax the bounds. This is left for further
study.
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