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Abstract

The task of estimating the maximum number of concurrent speakers from single
channel mixtures is important for various audio-based applications, such as blind
source separation, speaker diarisation, audio surveillance or auditory scene clas-
sification. Building upon powerful machine learning methodology, we develop a
Deep Neural Network (DNN) that estimates a speaker count. While DNNs effi-
ciently map input representations to output targets, it remains unclear how to best
handle the network output to infer integer source count estimates, as a discrete
count estimate can either be tackled as a regression or a classification problem. In
this paper, we investigate this important design decision and also address comple-
mentary parameter choices such as the input representation. We evaluate a state-
of-the-art DNN audio model based on a Bi-directional Long Short-Term Memory
network architecture for speaker count estimations. Through experimental evalu-
ations aimed at identifying the best overall strategy for the task and show results
for five seconds speech segments in mixtures of up to ten speakers.

1 Introduction

In a “cocktail-party” scenario with many concurrent speakers, different applications may be envi-
sioned such as localization, crowd monitoring, surveillance, speech recognition or speaker separa-
tion. In this scenario, a typical assumption is that the number of concurrent speakers is known,
which turns out to be of paramount importance for the effectiveness of subsequent processings. Un-
fortunately, in real world applications, information about the actual number of concurrent speakers
is often not available. Surprisingly, very few methods have been proposed to address the task of
counting the number of speakers.

Estimating the maximum number of concurrent speakers is closely related to the more difficult
problem of identifying them, which is the topic of speaker diarisation (who speaks when) [28].
We call a system that identifies speakers first, “counting by detection”. These systems often use
segments where only one speaker is active to discriminate the speakers. Then comparisons of found
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Figure 1: Illustration of our application scenario of three concurrent speakers and their respective
speech activity. Bottom plot shows the number of concurrently active speakers and its maximum k
which is our targeted output.

segments are made to discriminate and temporally locate the speakers within a given recording.
When sources are fully overlapped as in real “cocktail party” environments, such a segmentation
is hardly feasible. And when a speaker overlap is as prevalent as in a “cocktail-party” scenario,
developing an algorithm to detect speakers is challenging. In this study we therefore attempt to
directly estimate a speaker count instead of counting them after identification. We refer to this
strategy as “direct count estimation”.

In multichannel signal processing, count estimation usually is achieved by estimating directions of
arrival (DoA) and clustering them [22, 30]. The first single channel method, based on thresholding
amplitude modulation patterns, was proposed in [3]. In [25], the authors propose an energy feature
based on temporally averaged mel-scale filter outputs. In a more recent work [32], the number
of speakers is estimated by applying hierarchical clustering on fixed-length audio segments. The
main weakness of this method is to rely on the assumption that there are segments where only one
speaker is active. In another vein, Andrei et.al. [2] proposed an algorithm which correlates single
frames of multi-speaker mixtures with a set of single-speaker utterances. Motivated by the recent and
impressive successes of deep learning approaches in various audio-related tasks [13,33], we focus on
developing such a method for direct count estimation. In computer vision, (object) count estimation
using DNNs has recently achieved state-of-the-art performance [4, 5, 7, 17, 20, 27, 31, 34, 35]. Two
main paradigms may be found in the literature for this purpose, namely, regression and classification.

In this work we want to build upon these findings to achieve direct count estimation of speakers. Our
main contributions are: i) to formulate the speaker count estimation problem as either a classifica-
tion or a regression task, and ii) to propose a neural network architecture based on a state-of-the-art
BLSTM network, to infer the number of speakers from short audio segments of 5s. Finally, we
present experimental results for the different problem formulations as well as input feature repre-
sentations to identify the best strategy for this task. For the sake of reproducibility, pre-trained
network and the test dataset are made available for download on the accompanying website.2

2 Problem Formulation

We consider the task of estimating the maximum number of concurrent speakers, k ∈ Z+
0 , in a

single channel audio mixture x. This is achieved by applying a mapping from x to k. Let x be a
time domain signal of N samples, representing a linear mixture of L unique single speaker speech
signals sl. Naturally, not all speakers l = 1, . . . , L are active at every time instance. We therefore,
for each sample n, introduce a latent binary speech activity variable vnl ∈ {0, 1}. Then, our task is
to estimate

k = max
n

(
L∑
l=1

vnl

)
. (1)

It can be seen that our proposed task of estimating k ≤ L is more closely related to source separation
whereas the estimation of L itself is more useful for tasks where speakers do not overlap. We

2https://www.audiolabs-erlangen.de/resources/2017-CountNet
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assume that no additional prior information except the maximum number of concurrent speakers,
kmax, is available, representing an upper limit for estimation. In Figure 1, we illustrate our setup in
a “cocktail-party” scenario featuring L = k = 3 speakers. For the DNN system proposed in this
paper, we use a non-negative time-frequency (TF) input representation X ∈ RD×F+ instead of x,
where D and F denote the total number of time frames and frequency sub-bands, respectively.

2.1 Estimation in a Deep Learning Framework

In this study, we choose a deep neural network (DNN) as the mapping function fθ from the input X
to the output y, given by y = fθ (X), where the optimal parameters (weights) θ are learned via
supervised training. The output of the DNN is not necessarily the direct source count k, therefore
we introduce q (·) as a decision function, such that

k̂ = q (fθ (X)) . (2)

The DNN is trained in a supervised manner using a training database of {X, k} examples. In this
work, we want to investigate three different choices for the output distributions of the DNN, as well
as the corresponding decision functions q (·).
Classification: Here the output distribution is directly taken as discrete, discarding any meaning
concerning the ordering of the different possible values. Given some particular input X, the net-
work generates the posterior output probability for (kmax + 1) classes (including k = 0) using the
softmax activation function, and a maximum a posteriori (MAP) decision function is chosen that
simply picks the most likely class q = argmax(·). Notwithstanding its conceptual simplicity, clas-
sification has two drawbacks. First, the intuitive ranking between different estimates is lost: e.g.
p(k = 6) may not depend on p(k = 5). Second, the largest possible count kmax is given a priori.
Despite these limitations, classification-based approaches have successfully been applied in deep
neural networks for counting objects [17, 27, 35] in images.
Gaussian Regression: In regression, k is derived from an output distribution defined on the real
line. The output distribution in this setting is assumed to be Gaussian and the associated cost func-
tion is the classical squared error. During inference and given the output fθ (X) of the network, the
best discrete value that is consistent with the model is simply the rounding operator q = [·]. Gaus-
sian regression has achieved state-of-the-art counting performance in computer vision using deep
learning frameworks [4, 5, 20, 34].

Discrete Poisson modelling: When it comes to modelling count data, it is often shown effective
to adopt the Poisson distribution [9]. First, this strategy retains the advantage of the classification
approach to directly pick a probabilistic model over the actual discrete observations, avoiding the
somewhat artificial trick of introducing a latent variable that would be rounded to yield the observa-
tion. Second, the model avoids the inconvenience of the classification approach to completely drop
dependencies between classes. Due to these advantages, the Poisson distribution has been used in
studies devising deep architectures for counting systems [24]. For instance in [6, 9, 24], it is shown
that the number of objects in images can be well modelled by the Poisson distribution. Inspired
by these previous works, we also consider the Poisson output distribution P (k | fθ (X)) where
P (· | λ) denotes the Poisson distribution with scale parameter λ. In this setup, the cost function at
learning time is the Poisson negative log-likelihood and the deep architecture at test time provides
the predicted scale parameter fθ (X) ∈ R+, which summarizes the whole output distribution. As a
decision function q in this setting, we considered several alternatives. A first option is to again resort
to MAP estimation and pick the mode [fθ (X)] of the distribution as a point estimate. However,
experiments showed that the posterior median yields better estimates, and is given by

q (fθ (X)) = argmin
k̂

∞∑
k=0

∣∣∣k̂ − k∣∣∣P (k | fθ (X)) (3a)

= median (k ∼ P (fθ (X))) (3b)

where the median of a Poisson distributed random variable was approximated given the expression
in [8].
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Output Type Activation Dim. Loss

Classification Softmax Bkmax+1 Cat. cross entropy
Gaussian Regr. Linear R1 MSE
Poisson Regr. Exponential R1 Neg. log likelihood

Table 1: Output Activation Functions and Loss Functions

3 Proposed Model

Various audio-related applications share common DNN architecture designs, often found by incor-
porating domain knowledge and through extensive hyperparameter searches. For our proposed task
of source count estimation, however, domain knowledge is difficult to incorporate, as this study aims
at revealing the best strategy to address the problem. Therefore, we use a network built upon an ex-
isting BLSTM-RNN architecture, that has already shown a considerable amount of generalization
for various audio applications [12, 19].

A recurrent neural network (RNN) is very similar to a fully connected network, except that RNN
applies the same set of weights recursively over an input sequence. RNNs can detect structure in
sequential data of arbitrary length. This makes it ideal to model time series, however, in practice,
the temporal context learnt is limited to only a few time instances, because of the vanishing gradient
problem [14].

To alleviate this problem, forgetting factors (also called gating) were proposed. One of the most
popular gated recurrent cells is the Long Short-Term Memory (LSTM) [15] cell. Its effectiveness
has been proven in various applications and LSTMs are the state-of-the-art approach for speech
recognition [11] or singing voice detection [19]. In this work we employed a bi-directional LSTM
(BLSTM) with three hidden layers whose sizes are 30, 20 and 40 similar to the architecture intro-
duced in [19]. A BLSTM is more robust compared to a simple LSTM, since input information from
both past as well as the future in used to learn the weights. For further information on BLSTMs, the
reader is referred to [10].

For a given input sequence, the output of a recurrent layer is either only the last step output or a full
sequence. We found that employing the full sequence output of the last recurrent layer before feeding
it into the fully connected output layer is important in the context of RNNs for count estimation.
Furthermore we added a temporal max pooling layer with pooling size 2 to reduce the number
of parameters for the fully connected layer. Temporal max pooling intuitively fits to our problem
formulation which in itself is a maximum of the number of sources in a specific number of frames.

As we introduced in Section 2.1, the count estimation problem can be addressed using three different
strategies. For each of the decision functions a suitable output activation and loss is used as shown
in Table 1. Except for these (output) parameters, all models have the same parameters.

4 Training

Since a realistic dataset of fully overlapped speakers is not available, we chose to generate syn-
thetic mixtures. We recognize that in a simulated “cocktail-party” environment, mixtures lack the
conversational aspect of human communication but provide a controlled environment which helps
understand how a DNN solves the count estimation problem. As we aim for a speaker independent
solution, we selected a speech corpus with a large number of different speakers instead of large
number of utterances, yielding a larger number of unique mixtures. For training we selected the
LibriSpeech clean-360 [23] dataset which includes 363 hours of clean speech of English utterances
from 921 speakers (439 female and 482 male speakers).

As revealed in Section 2, the maximum number of concurrent speakers k requires annotation of the
activity of each individual speaker. Even though LibriSpeech comes with annotations, they often
are not consistent across different corpora. We therefore generated annotations based on a voice
activity detection algorithm (VAD). In this work, we used the implementation from the Chromium
Web Browser that is part of the WebRTC Standard [1].
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To generate a single training sample {X, k}, we draw a unique set of L speakers from the corpus.
For each of the speakers we then select a random utterance, resampled to 16 kHz sampling rate and
apply VAD. The VAD method was configured using a hop size of 10 ms. Further, the VAD estimate
was used to remove silence in the beginning and the end of an utterance recording. In the next
step, more utterances from the same speaker are drawn from the corpus until the desired duration is
reached. Both, the audio recording and the VAD annotation of each utterance is concatenated. The
procedure is repeated for all speakers so that L time domain signals are created. The signals are
mixed and peak normalized to avoid clipping. Mixtures are then transformed to a time-frequency
matrix X ∈ D × F as defined in Section 2. The ground truth output k are then computed using the
VAD matrix based on Equation 1.

We follow the proposal of [31] and include non-speech examples in our training data to avoid using
zero input samples for k = 0. For this, we used the TUT Acoustic Scenes dataset [21] to create
negative training samples using the same procedure as described above. Because these environ-
mental sounds could include speech, scenes with cafe/restaurant, grocery store and metro
station were omitted.

As our application closely relates to source separation it is desirable for our trained DNN system to
be robust against gain variations. We therefore find it important to make sure that the DNN cannot
leverage the gain factors of the mixture. We found that the averaged energy of one bin across all
frames of the input sample already is a solid indicator for the number of speakers.

To accomodate these findings, we normalize X to the average Euclidean norm of all frames as used
in [29]. Additionally, as common in machine learning, we scale the normalized input representation
so that the feature dimensions have zero mean and unit variance/standard deviation across the whole
training dataset.

To train the network we use Poisson sampling to balance the number of samples Tk for each k. For
our experiments we chose a medium-sized training dataset of Tk = 1820 samples ∀k ∈ [0, . . . , 10]
resulting in a total of 20,020 training items, each containing 10 seconds of audio, resulting in 55.55
hours of training material. The actual duration of each input is reduced to five seconds by selecting
a random excerpt from each mixture. For each excerpt Equation 1 is evaluated to generate a single
sample, then combined into mini-batches of 32 samples. This way the network is seeing slightly
different samples (in different order) in each training epoch. We found this procedure (also used
in [26]) to help speeding up the stochastic gradient based training process. The DNN is trained
using the ADAM optimizer [18]. In addition to the training dataset we created a separate validation
dataset of Tk = 5720 samples using a different set of speakers from LibriSpeech dev-clean. Early
stopping is applied by monitoring the validation loss to reduce the effect of overfitting. Training
never exceeded 50 epochs.

5 Evaluation

We evaluated our proposed network architecture with two main parameters: the three proposed out-
put distributions (see Section 2) and four different input representations. To allow for a controlled
test environment and at the same time limit the number of training iterations, we fix certain param-
eters: In our experiment all speakers were mixed to 0 dB SNR. For all experimental parameters we
ran the training three times with different random seeds for each run and report averaged the results
to minimize random effects caused by early stopping. We used the LibriSpeech test-clean subsets
to generate 5720 unique and unseen speaker mixtures of five seconds duration for the test set with
kmax = L = 10.
Since we are dealing with a novel task description, related speaker count estimation techniques like
those introduced in Section 1, could hardly be used as baselines. Specifically, [32] does not work
on fully overlapped speech, [2] does not scale to the size of our dataset, since it requires to cross-
correlate the full database against another. Finally, [25] proposes a feature but does not employ a
fully automated system. We translated this method into a data-driven approach and employed a vec-
tor quantizer to get an optimal mapping with respect to the sum of squares criterion (we refer to this
as VQ).
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Figure 2: Mean absolute error (MAE) over ground truth count k = [0 . . . 10]. Error bars show the
95% confidence intervals. Results are averaged over the different feature representations (a) and
output distributions (b).
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Figure 3: Normalized confusion matrix showing k̂
over k for the test data of the best performing net-
work (Output Distribution: Classification, Feature
Representation: STFT).

5.1 Input Representations

For our task, we chose several different input representations, well-established in speech application.
We expect that a high frequency resolution is needed to discriminate time frequency bins with over-
lapped speech segments from those that only belong to a single speaker. We compared the following
input representations that were all based on a frame length of 25 ms:
STFT: magnitude of the Short-time Fourier transform computed using Hann windows. The result-
ing input is X ∈ R500×201.
LOGSTFT: logarithmically scaled magnitudes from STFT representation using log(1 + STFT ).
The resulting input is X ∈ R500×201.
MEL40: compute mapping from the STFT output directly onto Mel basis using 40 triangular filters.
The resulting input is X ∈ R500×40.
MFCC20: First 20 Mel-frequency cepstral coefficients. The resulting input is X ∈ R500×20.

vi



Before feature transformation, all input files were resampled to 16 kHz sampling rate. All features
are computed using a hop size of 10 ms.

5.2 Metric

While the intermediate output y is treated as either a classification or a regression problem (See
Section 2), we evaluate the final output k as a discrete regression problem. We therefore evaluate
the performance using the mean absolute error (MAE), which is also used to evaluate other count
related tasks (c.f. [24, 34]).

5.3 Results

To find the best parameters, we performed training and evaluation for the parameters, resulting in
36 trained networks. On average each network was trained 33 epochs before early stopping was
engaged. Training duration was about 800 seconds per epoch on a NVIDIA GTX 1080 GPU. We
present the results in terms of input representation and output distribution in Figure 2. One can
see that the overall trend of the count error in MAE is similar regardless of the parametrisation:
all models are able to reliably distinguish between k = 0 and k = 1, followed by a nearly linear
increase in MAE for k = [1 . . . 7]. For k > 7 it can be seen that the classification networks have
learned the maximum of k across the dataset, hence the prediction error decreases when k reaches
its maximum. This is because classification based models intrinsically have access to the maximum
number of sources determined by the output vector dimensionality.

Figure 2a indicates that Classification outperforms the other two distributions while Poisson regres-
sion performs better than Gaussian regression which confirms the findings made in [24] on object
counts. With respect to the input representation, as shown in Figure 2b, despite its larger input di-
mension, choosing linear STFT as generally results in a better performance compared to MEL40,
LOGSTFT or MFCC20.

A detailed analysis of all distribution and feature combinations, not shown here due to space con-
straints, reveals that STFT + Classification performs best. This model achieves results of (MAE
0.38±0.28) for k = [0 . . . 10] while the VQ baseline (MAE 2.41±1.08) only performs slightly bet-
ter than a mean estimator predicting k̂ = 5 (MAE 2.73± 1.63). To show the level of overestimation
or underestimation, we depict all responses in a confusion matrix (see Figure 3). Unlike humans
that generally tend to underestimate for the task of speaker count estimation [16], one can see that
our proposed model slightly overestimates for smaller k.

6 Conclusion and Outlook

We introduced the task of estimating the maximum number of concurrent speakers in a simulated
“cocktail-party” environment using a data-driven approach. We evaluated three different methods
to output integer source count estimates in conjunction with defining cost function over which to
optimize. Our experiments revealed a tradeoff between better overall performance but requiring
the maximum number of speakers to be estimated as prior knowledge (classification) and slightly
worse performance when treated as a regression problem using Poisson distribution. Furthermore,
we investigated and evaluated suitable input representations. Our final proposed BLSTM based
classification model achieves mean absolute error of less than 0.4 speakers for zero to ten speakers.
We think this first study on data-driven speaker count estimation opens the field to interesting and
new research. Future work would be to evaluate and optimize other network structures such as
convolutional neural networks and investigate the strategy a machine learning source count model
pursues to solve the problem.
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