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ABSTRACT

Matrix completion is one of the key problems in signal processing
and machine learning, with applications ranging from image pro-
cessing and data gathering to classification and recommender sys-
tems. Recently, deep neural networks have been proposed as la-
tent factor models for matrix completion and have achieved state-
of-the-art performance. Nevertheless, a major problem with existing
neural-network-based models is their limited capabilities to extend
to samples unavailable at the training stage. In this paper, we propose
a deep two-branch neural network model for matrix completion. The
proposed model not only inherits the predictive power of neural net-
works, but is also capable of extending to partially observed samples
outside the training set, without the need of retraining or fine-tuning.
Experimental studies on popular movie rating datasets prove the ef-
fectiveness of our model compared to the state of the art, in terms of
both accuracy and extendability.

Index Terms— matrix completion, deep learning, matrix fac-
torization.

1. INTRODUCTION

Recovering a matrix from partial observations is a problem of high
interest in many signal processing and machine learning applica-
tions, where a matrix cannot be fully sampled or directly observed.
Examples of signal processing tasks that employ matrix completion
algorithms include image super resolution [1], image and video de-
noising [2], data gathering in wireless sensor networks [3], and
more. In machine learning, matrix completion has been employed
to tackle problems such as clustering [4], classification [5], and rec-
ommender systems [6, 7, 8, 9].

Let M ∈ Rn×m be a matrix with a limited number of observed
entries Mij , (i, j) ∈ Ω, with Ω the set of indices corresponding to
the observed entries. Then, recovering matrix M from the knowl-
edge of the value of its entries in the set Ω is formulated as an opti-
mization problem of the form:

R = arg min
R̄
‖PΩ(R̄−M)‖F , (1)

with R ∈ Rn×m denoting the complete matrix, PΩ an operator that
indexes the entries defined in Ω, and ‖ · ‖F the Frobenius norm.

Several studies have focused on the problem of recovering R
from M . Under the assumption that R is a low-rank matrix, a con-
vex optimization method that solves a nuclear norm minimization
problem has been proposed in [10]. The major drawback of algo-
rithms belonging to this category is their high computational cost,
especially when the dimensions of the matrix increase. Low-rank
factorization [11] has been proposed to address large-scale matrix
completion problems. The unknown rank-r matrix is expressed as

the product of two much smaller matrices UV T , with U ∈ Rn×r ,
V ∈ Rm×r , and r � min(n,m), so that the low-rank requirement
is automatically fulfilled.

Several matrix completion algorithms have been proposed to ad-
dress the problem of collaborative filtering for recommender systems
[12, 6, 7, 8, 9]. In this application scenario, the matrix entries reflect
users’ preferences (ratings) for items. Considering low-rank factor-
ization as a mapping of both users and items to a joint latent fac-
tor space of dimensionality r, the relation between users and items
is modelled as an inner product in that space. The class of tech-
niques that learn latent representations of users and items such that
user-item interactions can be modelled as inner products in the latent
space is referred to as matrix factorization [12].

Recently neural network models have achieved state-of-the-art
performance [6, 7, 8, 9] in the problem of matrix completion. How-
ever, a major drawback of existing methods is that they cannot be
extended to users unseen during training. Updating the model at the
arrival of new users or items as in online matrix completion meth-
ods [13, 14] can be time consuming, and, thus, impractical in high-
dimensional settings. Moreover, the employment of external infor-
mation (implicit feedback) to predict interactions between new users
and items—as in [9, 15]—may not be applicable in many use cases.
Considering that recommender systems often have to process matri-
ces of very high dimensions and deal with new users or items ap-
pearing every second, a matrix completion method that can be easily
extended to unseen samples is of great significance.

In this work, we focus on the development of an algorithm that
can recover the unknown entries of a partially observed matrix even
if some samples have not been seen during training. Unlike previous
studies [9, 15], we only employ explicit user feedback, that is, avail-
able matrix entries. Our model relies on matrix factorization prin-
ciples, building upon a two-branch deep neural network architecture
to learn efficient latent representations of row and column samples.
We refer to our model as Neural Matrix Completion (NMC). Inde-
pendent work [16] has recently proposed a model similar to ours,
which, however, focuses on predicting the personalized ranking over
a set of items in recommender systems and employs both explicit
and implicit feedback. In contrast to [16], our model (i) focuses on
the matrix completion problem with emphasis on the extendability;
and (ii) employs convolutional summarization layers, enabling its
application to very high-dimensional matrices.

The rest of the paper is organized as follows: Section 2 reviews
the related work. In Section 3, we present the proposed neural net-
work model, show how the model can be extended to new samples,
and discuss its application in high-dimensional matrices. Section 4
includes experimental results in popular datasets. Conclusions are
drawn in Section 5.
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2. RELATED WORK

Neural networks have been proven effective in several domains such
as image classification [17], sequence modeling [18], and inverse
problems in signal processing [19]. In matrix completion, existing
work involves autoencoders, graph convolutional networks and deep
learning neural networks. Autoencoder-based models [20, 21] learn
transformations from original row or column vectors to a latent space
and decoders to predict the missing values. Geometric matrix com-
pletion models employ graph convolutional networks to learn the
feature vectors from column (or row) graphs [7] or bipartite user-
item graphs [22]. The CF-NADE (Collaborative Filtering - Neu-
ral Autoregressive Distribution Estimator) method [6], on the other
hand, learns directly the latent vectors from columns and rows. The
Neural Collaborative Filtering (NCF) [9] and Collaborative Metric
Learning (CML) [15] utilize implicit feedback, i.e. interactions be-
tween users and items such as like, follows, shares, rather than ex-
plicit feedback, e.g. ratings.

A dominant idea behind many matrix completion algorithms
is matrix factorization [12]. Matrix factorization models are re-
alizations of latent factor models. They rely on the assumption
that there exists an unknown representation of users and items in a
low-dimensional latent space such that user-item interactions can be
modelled as inner products in that space. Fitting a factor model to
the data is a common approach in collaborative filtering [23, 24].
Recently, neural networks have been employed to learn latent rep-
resentations for matrix completion. The work presented in [8, 9]
extends matrix factorization models by replacing the inner product
with a non-linear function to model the interaction between row
and column samples; however, these models cannot be extended to
samples unseen during training (see Section 3.2 for further explana-
tions).

3. EXTENDABLE MATRIX COMPLETION

The proposed NMC model is a matrix factorization model. The
model learns vectors of the row and column samples using the avail-
able entries, and predicts the missing entries using the inner product
of the learned latent vectors. The major challenge is, therefore, to
compute the mapping of users and items into latent vectors. In our
model, latent vector representations are obtained via a two-branch
deep learning architecture. Our model is trained with explicit feed-
back and no additional information is used. Next, we present the
model architecture that realizes this approach, and discuss its ability
to extend to new samples.

3.1. Proposed Model

Consider a partially observed matrix M ∈ Rn×m, and let Xi ∈
Rm, i = 1, . . . , n, be the i-th row vector and Yj ∈ Rn, j =
1, . . . ,m, the j-th column vector. The proposed model for the pre-
diction of the value Rij at the (i, j) matrix position takes as input a
pair of vectors (Xi, Yj) and outputs

Rij = g (Xi, Yj) , (2)

whereRij is the predicted value at the (i, j) position, and g is a func-
tion reflecting the affinity between the i-th row and the j-th column
of the matrix. A good model should follow the rule that similar row
vectors and similar column vectors produce similar matrix values.

Following the matrix factorization strategy, we design a model
that uses a mapping of row and column vectors into a latent r-
dimensional factor space, such that the obtained representations can

Fig. 1. The proposed two-stream neural network architecture for
matrix completion. Xi, Yj are input vectors, corresponding to the
ith row and j th column of the original matrix. The left and right
branches of embedding layers consist ofLX andLY fully connected
layers. Ui, Vj are the latent representations of Xi and Yj , respec-
tively, f is a function to convert (Ui, Vj) to the prediction Rij .

provide predictions using the normalized inner product, i.e., the co-
sine similarity function. Denoting by Ui ∈ Rr , Vj ∈ Rr the latent
representations ofXi and Yj , respectively, the valueRij at the (i, j)
matrix position is given by:

Rij = f (Ui, Vj) =
UT

i Vj

‖Ui‖2 ‖Vj‖2
. (3)

Denoting the two embedding functions by hX and hY , the repre-
sentations of Xi and Yj in the latent space are Ui = hX(Xi) and
Vj = hY (Yj).

In this work, we rely on the ability of deep neural networks to
provide complex representations that can capture the relations be-
tween the underlying data. The proposed architecture is presented
in Fig. 1. The two branches are designed to map row and column
vectors into a shared latent space. The embedding functions hX and
hY are realized by a number of LX and LY fully connected lay-
ers, respectively, each followed by a batch normalization layer [25]
and a ReLU activation function [26]. To mitigate overfitting, we
add a Dropout layer [27] after all but the last hidden layers. The
use of batch normalization layers also helps control overfitting [25].
We learn hX and hY by fitting the observed data. Our training set
is created from the partially observed matrix M . Specifically, we
create two sets of samples, X and Y , with X containing n row sam-
ples Xi ∈ Rm, i = 1, . . . , n, and Y containing m column samples
Yj ∈ Rn, j = 1, . . . ,m. The inputs for our NMC model are taken
from these two sample sets, X and Y .

Since the cosine similarity between two vectors lies in [−1, 1],
all entries Mij ∈ [α, β] in the original matrix M are scaled into this
range during training, according to

Mij =
Mij − µ
µ− α , ∀i, j, (4)

with µ = (α+ β) /2. After the prediction, a re-scaling step is re-
quired to bring the estimated matrix R to the same value range as
M .

We employ the mean square error (MSE) as the loss function to



Fig. 2. Extendability in matrix completion. Dark shaded area (I):
rows and columns available during training. Light shaded areas (II)
and (III): entries corresponding to the interactions of unseen rows
and seen columns and vice versa. White area (IV): entries corre-
sponding to the interactions of unseen rows and unseen columns.

train NMC,

LMSE =
1

|Ωtr|
∑

ij∈Ωtr

(Rij −Mij)
2, (5)

where Ωtr is the set of indices of entries available during training and
|Ωtr| is its cardinality.

3.2. Extending NMC to New Samples

A major problem of deep-neural-network-based models for matrix
completion is related to their capability to be extended to samples
unseen during training. An illustration of this problem is shown in
Fig. 2. The dark shaded area (I) corresponds to a submatrix M(I) of
M which is available during training. Only a small number of entries
in M(I) are observed. Therefore, our model described in Section 3.1
can only be trained with input vectors Xi ∈ Rm(I) , i = 1, . . . , n(I),
and Yj ∈ Rn(I) , j = 1, . . . ,m(I). The rows at the bottom and the
columns to the right of M , which belong to light-shaded areas (II)
and (III), are denoted as M(II) and M(III), respectively. They consist
of new samples that are completely unseen during training. In rec-
ommender systems, these rows and columns represent new users and
items. Thus, the light-shaded areas (II) and (III) represent the inter-
actions between new users (or items), with existing items (or users),
while the white area (IV) represents the interactions of new users
with new items. It should be noted that, even though M(II) , M(III)

andM(IV) are completely unseen during training, in this setting, they
are not zero vectors, but they contain partial observations. Similar
to M(I), the partial observations of M(II), M(III) and M(IV) are used at
testing, where the task is to predict all the missing values from these
observed ones.

In existing deep-network-based methods, the models are trained
and evaluated on the same area. While this procedure enables mea-
suring the accuracy of the predicted matrix, it does not measure how
well a method can be extended to new rows and columns. NMC can
provide predictions not only for unknown entries belonging to area
(I) but also for entries in areas (II), (III) and (IV). The most important
feature of NMC compared to existing models is that the functions
transforming the original row and column vectors into the latent
space are learned separately for rows and columns, and the model
architecture enables direct employment of the embedding functions
for rows and columns unseen during training.

In recommender systems, predicting the unknown entries of a

row belonging to area (II) is equivalent to providing recommenda-
tions for existing items to a user unseen during training. In Fig. 2,
the new user is represented by a new partially observed row vector,
Xn(I)+`, at the position n(I)+`, where ` = 1, . . . , n(II). The (n(I)+`)-
th user can interact with any column vector Yj , j = 1, . . . ,m(I),
according to (2), so as the model can fill in the missing entries at
any position at the (n(I) + `)-th row. In a similar way, NMC can be
extended to area (III).

Suppose now that we want to fill in an unknown entry at the
(n(I) + `,m(I) +k) position in area (IV), where ` = 1, . . . , n(II), k =
1, . . . ,m(III) (see Fig. 2). Suppose that a row vector corresponding to
the (n(I)+`)-th new user is available and its dimension ism(I)+m(III).
Suppose, also, that a column vector corresponding to the (m(I) +k)-
th new item is available and its dimension is n(I)+n(II). NMC ignores
any observations in area (IV) and takes the first m(I) elements of
Xn(I)+` row corresponding to ratings for the existing m(I) items, and
the first n(I) elements of Ym(I)+k column corresponding to ratings
of the existing n(I) users for the (m(I) + k)-th item to form the input
vectors; then, the model given by (2) can fill in the (n(I) +`,m(I) +k)
empty entry in area (IV).

NMC employs a two-stream network architecture for matrix
completion, similar to [8, 15, 9]. Nevertheless, the models [8, 15, 9]
are tied to the users and items available during training, using
one-hot vector representations for each user and each item corre-
sponding to the indices of rows and columns in the matrix M(I). In
other words, the embedding function is a mapping from row and
column indices to the latent representations. Hence, these methods
cannot be extended to new rows and columns whose indices are
not available during training. Comparing our method with Autorec
proposed in [20, 21], we incorporate both row and column vectors
at the same time, while Autorec works with either rows or columns.
This brings an advantage on the extendability of NMC compared to
Autorec (NMC can extend in both dimensions while Autorec only in
one). Other recent neural-network-based model [22], even though
achieves top performance in many benchmarks, cannot be extended
to samples outside area (I).

3.3. Scaling NCM to High Dimensional Matrices

Dimensionality is another major problem that has to be addressed by
matrix completion methods; in many settings the dimensions of the
matrix of interest can be extremely large. For example, the Netflix
problem [29] deals with matrix dimensions of the order of several
thousands. Directly applying the NMC model to extremely large
matrices is not optimal, due to the high dimensionality and sparsity
of the inputs.

We propose the use of one or multiple summarization layers
to reduce the input dimensions before the embedding layers. Each
summarization layer is composed of a 1D convolutional layer, with
a pre-defined number of filters of adjustable kernel sizes, followed
by a batch normalization layer [25] and a ReLU activation function
[26]. By properly configuring the number of filters and kernel size,
each summarization layer slides across the row and column vectors,
and summarizes them into denser vectors of lower dimensions. We
call this variant of NMC with summarization layers as NMC-S.

4. EXPERIMENTAL RESULTS

We evaluate the proposed NMC-S model with experiments employ-
ing real matrices of varying dimensions and sparsity levels and com-
pare it with state-of-the-art methods. Next, we present results in-
volving the following two movie rating datasets: one version of the



Table 1. Matrix completion results on the ML-1M dataset [28].
Area (I) Area (II) Area (III) Area (IV)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
U-CF-NADE-S [6] 0.855 0.671 - - - - - -
I-CF-NADE-S [6] 0.839 0.651 - - - - - -

U-Autorec [20] 0.906 0.722 0.976 0.781 - - - -
I-Autorec [20] 0.841 0.662 - - 0.856 0.670 - -

Deep U-Autorec [21] 0.889 0.702 0.969 0.765 - - - -
NMC-S 0.850 0.675 0.883 0.699 0.864 0.685 0.904 0.715

Table 2. Matrix completion results on the Netflix dataset [29].
Area (I) Area (II) Area (III) Area (IV)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
I-Autorec [20] 0.842 0.655 - - 0.862 0.671 - -

Deep U-Autorec [21] 0.848 0.662 0.879 0.689 - - - -
NMC-S 0.856 0.676 0.861 0.680 0.873 0.688 0.877 0.692

MovieLens dataset [28] with one million available user ratings (ML-
1M) and the Netflix dataset [29].

We run experiments on five random splits of each dataset. Each
split involves partitioning the dataset into four parts, corresponding
to areas (I) to (IV), as in Fig. 2. We randomly shuffle the rows and
columns of the given matrix, so that two splits are always different.
Area (I) is assigned 80% of the row and column samples. Follow-
ing [20, 6], in each area we randomly mark 90% of the available
entries as observed; the remaining 10% are reserved for evaluation.
The training set is formed only by the observed entries in area (I).
During evaluation, the model predicts the reserved test entries from
the observed ones in all areas. The reserved test entries are used to
calculate the prediction error.

For the evaluation of our model, we employ the root mean
square error (RMSE) and the mean absolute error (MAE) de-
fined as follows: RMSE =

√∑
ij∈Ωeval

(Rij −Mij)2/ |Ωeval|
MAE =

∑
ij∈Ωeval

|Rij −Mij | / |Ωeval|, where Ωeval is the set of
indices corresponding to entries available for evaluation and |Ωeval|
represents the cardinality of Ωeval.

For the ML-1M dataset, in each branch of NMC-S model, we
use two hidden layers with 2048 and 1024 hidden units, respectively.
We employ a summarization layer of 32 filters in both branches,
with kernel size 32 and 48 and stride 16 and 24, respectively. It
is worth mentioning that since the matrix dimension of the ML-1M
dataset is not too large, the summarization layers employed do not
necessarily reduce the dimensions of the input vectors. Since the
number of training samples in this dataset is small, we employ a
dropout regularizer with ratio 0.6. On the Netflix dataset, the matrix
dimensions become very high. The NMC-S model is constructed
with two embedding layers in each branch, both with hidden size
of 2048. The row branch has one summarization layer with filter
size 128 and stride 64. The column branch has two summarization
layers, with filter sizes 96 and 64 and strides 48 and 32, respectively.

We compare the proposed NMC-S model against state-of-the-
art matrix completion methods, namely, Autorec [20], Deep Autorec
[21] and CF-NADE [6]. We use the default parameters for the user-
based autorec (U-Autorec), item-based autorec (I-Autorec) and CF-
NADE models as in [20, 6]. It should be noted that the results shown
here are slightly different than those reported in [6, 20], since we
train the models on a subset of the given matrices [area (I)]. Never-

theless, the relative performance ranking is consistent with [6, 20].
Table 1 presents the results for the ML-1M dataset. In area (I), I-

CF-NADE-S achieves the best performance, followed by I-Autorec
and our NMC-S model. NMC-S outperforms U-Autorec and Deep
U-Autorec in area (II). In area (III), I-Autorec has the best perfor-
mance, yet followed closely by our NMC-S. It should be noted that,
even though NMC-S has lower performance than I-CF-NADE-S and
I-Autorec in area (I) and area (III), the performance difference is
small while the overall accuracy gain in the other areas is signifi-
cant. Furthermore, the proposed NMC-S model is the only one that
can be extended to area (IV).

The results for the Netflix dataset are presented in Table 2. On
this dataset, we do not include the two CF-NADE models because
of their high associated complexity. As can be seen, I-Autorec per-
forms the best in areas (I) and (III), among the three models. The
large number of training data improves the performance of Deep U-
Autorec, which in this dataset achieves better results in both areas (I)
and (II). However, NMC-S is the only model that can be extended
to all areas and delivers the best performance in areas (II) and (IV).
It is worth mentioning that many techniques employed for Deep U-
Autorec [21], such as dense re-feeding or heavy regularization, can
also be used to boost the performance of NMC-S. Nevertheless, we
leave this exploration for future work.

5. CONCLUSIONS

We presented a novel matrix completion method, namely, NMC,
which relies on the principles of matrix factorization. Our model
is realized by a two-branch neural network architecture that maps
row and column data into a joint latent space such that the relations
between row and column samples can be modelled as inner products
in that space. Our method can be extended to data unseen during
training, a feature that is of great significance in recommender sys-
tems where new users or items appear every second. Easily applied
to high-dimensional matrices, the proposed model can be used to
address well-known high-dimensional problems such as the Netflix
problem. Experiments performed on real matrices of varying dimen-
sions and sparsity levels have shown the effectiveness and robustness
of our model with respect to the state of the art.
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