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ABSTRACT
Deep learning models have a large number of free parame-
ters that must be estimated by efficient training of the models
on a large number of training data samples to increase their
generalization performance. In real-world applications, the
data available to train these networks is often limited or im-
balanced. We propose a sampling method based on the radial
transform in a polar coordinate system for image augmenta-
tion to facilitate the training of deep learning models from
limited source data. This pixel-wise transform provides rep-
resentations of the original image in the polar coordinate sys-
tem by generating a new image from each pixel. This tech-
nique can generate radial transformed images up to the num-
ber of pixels in the original image to increase the diversity
of poorly represented image classes. Our experiments show
improved generalization performance in training deep convo-
lutional neural networks with radial transformed images.

Index Terms— Augmentation, deep learning, imbal-
anced dataset, polar coordinate system, radial transform.

1. INTRODUCTION

The need for massive amounts of data to train deep neural net-
works is a major drawback to these models [1], [2]. General-
ization performance and versatility of deep learning [3] mod-
els are highly dependent on availability of abundant data. The
generalization performance refers to the accuracy of the neu-
ral network in classification of unseen data. The other chal-
lenge is imbalanced datasets, where very few data samples are
available for some data classes [4]. These challenges arise in
many practical machine learning scenarios such as financial
transactions [5] and fraud detection in banking transactions
or in medical sciences [4], [6]. In the former, a small number
of fraudulent transactions are imbalanced by a high percent-
age of normal transactions. In the latter, the majority of the
population being healthy or a low prevalence rate for certain
medical conditions in the dataset can bias the deep learning
model.
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The training of a neural network with limited data may be
mitigated by sampling noise, which exists in the training data
but not in the test data drawn from the same distribution [7].
An elegant solution to these challenges is data augmentation,
i.e., the application of one or more deformations to a collec-
tion of annotated training samples which result in new, addi-
tional, and potentially non-redundant training data [8], [9].

In general, data augmentation does not increase the infor-
mation content of the dataset. However, it can improve diver-
sity of the dataset and generalization performance. Diversify-
ing the data helps the network to generalize better to unseen
data and become invariant to applied deformations [9]. The
neural network learns from the added diversity and gains ex-
perience in how data belonging to the given labels can “look
different”. The various deformations commonly applied to la-
beled data, such as multiplication by a transform matrix, does
not affect the semantic meaning of the labels [9]. Some of the
image augmentation techniques include adding noise, rotat-
ing, translating, mirroring, or scaling the image. Affine is a
2D geometric transform method based on applying a combi-
nation of translation, rotation, scaling, and shearing transfor-
mations. The Affine augmentation method is widely used as
an image augmentation method for correcting geometric dis-
tortion introduced by perspective irregularities [10]. Another
approach is making an image that contains multiple copies of
the original image rotated by different angles [11]. The polar
harmonic transform, based on a set of orthogonal projections,
is another method that has been used to generate a set of fea-
tures that are insensitive to rotation [12].

In this paper, an augmentation method based on the radial
transform is proposed to sample images in the polar coordi-
nate system and map the samples to Cartesian space for con-
struction of new (augmented) images. A radial transformed
image is a coherent representation of the original image and
maintains the semantic validity of the data classes.

2. PROPOSED METHOD

We define a point on a plane in the polar coordinate system
as (r, θ) ∈ P2 where r ∈ Z+ is the radial coordinate and
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(a) Sampling from pixels using
radial transform.

(b) Constructed image from se-
lected samples in the polar coor-
dinate system.

(c) Ring enhancing mass on a
brain MRI.

(d) Augmented MRI from origi-
nal MRI using radial transform.

Fig. 1: Radial transform sampling. a) Selected discrete samples us-
ing radial transform on an arbitrary plane. The arbitrary selected
pole is at pixel O(170, 50); b) Mapping of selected samples in (a)
from polar coordinate system to Cartesian coordinate system. The
red samples show the direction of mapping the samples in (a) into
(b); c) An example of radial transform application in tumor detec-
tion: Ring enhancing mass on an original brain MRI. Detection of
the mass requires non-linear threshold(s); d) The original brain MRI
in (c) after radial transform with pole selected in the middle of the
mass. The ring enhancing mass is expanded (up-sampled) and can
be detected with a linear threshold.

θ ∈ R+ is the counterclockwise angular coordinate with re-
spect to a polar axis drawn horizontally from the pole to the
right, as illustrated in Figure 1(a). We draw M distinct rays
with lengthRm ∈ R+ wherem = 0 is the arbitrary initial ray
along the polar axis. Each ray has an identical angular differ-
ence ∆θ = |θm+1− θm| from its adjacent ray. Then, we gen-
erate a set of spatial coordinates K = {(r, θm)k} in P2, with
respect to a pole O(u, v) ∈ P2 such that u, v ∈ Z+, which is
an arbitrary selected pixel in the original image XM×N ∈ C2
in the Cartesian coordinate system. Therefore, to generate a
point (r, θm)k for r ∈ {0, ..., N − 1} we have

θm = 2 π ·m/M, (1)

where m ∈ {0, ...,M − 1}. By X
φ(r,θm)k−−−−−−→ X̂, we map the

pixels at Cartesian coordinates (m,n) ∈ Z+ from the original
image X in C2 to construct the augmented image X̂ ∈ C2 in
the Cartesian space using radial transform φ(·) as

x̂ = round(r · cos(θm)) & ŷ = round(r · sin(θm)) (2)

for r ∈ {0, ..., N − 1} and m ∈ {0, ...,M − 1} such
that 0 ≤ u+ x̂ < M and 0 ≤ v + ŷ < N . These condi-
tions guarantee that the pair (x̂, ŷ) stays spatially within X̂. A
new pixel (m, r) in the constructed image is then defined as
x̂m,r = xu+x̂,v+ŷ. The image X̃ is the radial transform of X
with respect to the pixel O(u, v) ∈ X.

The pole at pixel location O(u, v) in X is repeated as the
first pixel in every row m ∈ {0, ...,M − 1} of X̂, as illus-
trated in Figure 1(b). As r → N for an arbitrary θm, pixels
in close neighborhood of O(u, v) are up-sampled and pixels
in further neighborhood are down-sampled. The proposed ra-
dial transform can generate unique radial transformed images
up to the number of pixels in X, which is M × N . Such
high diversity of images preserves the dependencies among
local and global pixels in X but in different representations.
For a typical 256× 256 original image, the rotation augmen-
tation approach generates much less new representations of
the original image (e.g., 360 new representations by having a
rotation step of one degree) comparing with the radial trans-
form, which generates 256× 256 = 65, 536 new images.

Figure 1(c) shows a practical example on how radial trans-
form can help to map a set of pixels belonging to a ring en-
hancing mass in a brain magnetic resonance imaging (MRI)
to be mapped into a new image using polar coordinate system.
The pole is selected in the middle of the mass. Distinguishing
the mass in the Cartesian plane requires a set of non-linear
thresholds. However, radial transform in Figure 1(d) has ex-
panded (i.e., up-sampled) the image in local neighborhood of
the mass and has compressed (down-sampled) the further, less
important pixels. In this way the mass can be easily separated
with a linear threshold. This example clearly shows how ra-
dial transform not only can help to augment images but also
can reduce complexity of classification problems in images.
In this paper, our focus is on the augmentation property of the
radial transform.

A neural network can be trained with the generated radial
transformed images. An image can be classified by applying
φ(·) on a subset of pixels T and detect the corresponding clas-
sification labelsL = {ct : ct = argmax{pt,1, ..., pt,C} ∀ t ∈
T} using a trained network with radial transformed images.
These labels can be directly used for segmentation and multi-
object detection applications. As an example for the single-
object image classification task, the majority of votes from
the predicted labels (i.e., the most frequent label in L) is the
predicted class

3. EXPERIMENTS

Experiments were conducted using GoogLeNet [13] and
AlexNet [8] on two datasets: the MNIST dataset with 10
classes of hand written digits [14] and a dataset of naturally
limited 9 different modalities of medical images [15]. A sam-
ple from some of the image classes is presented in the first
row of Figure 2.
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Fig. 2: A sample from some data classes of MNIST and medical multimodal datasets with their corresponding representation using radial
transform, (φ(·)) and Affine transform (ψ(·)), for a randomly selected pixel. a) 0; b) 1; c) 2; d) 3; e) 4; f) 5; g) 6; h) Chest X-Ray; i) Head
CT; j) Lung CT; k) Mammogram; l) Pelvis MRI; m) Sagittal Abdomen MRI; n) Breast MRI.

3.1. Settings

In order to evaluate how the radial transform can increase
diversity of a dataset and help the deep learning model
to improve the generalization performance, the standard
AlexNet and GoogLeNet models are trained with three differ-
ent datasets: D1) Original images with 20 and 40 samples per
class; D2) Affine transformed ψ(·) images of the original im-
ages, where 100 images are made from each original image,
totally two datasets of size 2,000 and 4,000 images per class.
The transformation parameters are selected randomly; D3)
Radial transformed φ(·) images of the original images, where
100 images are made from each original image, totaling two
datasets of size 2,000 and 4,000 images per class. The pole
is selected randomly in the original image. The datasets are
made for MNIST and medical multimodal images, totaling
six datasets.

The AlexNet and GoogLeNet models are trained using
Stochastic Gradient descent over 50 iterations with expo-
nential decay learning rate initialized to 0.01 and 0.001 for
models trained with original and radial or Affine transformed
images, respectively. The parameters are selected based on
grid search. The training dataset is shuffled to avoid sen-
sitivity of the models to training order. The models are
cross-validated over 30 independent experiments and a statis-
tical test is conducted on the results. The validation and test
datasets have 1,000 images each, with identical number of
samples per class.

3.2. Results Analysis

Figure 2 shows how the Affine transform and the proposed
radial transform can augment an image to generate a new rep-
resentation. The augmented images using Affine transform
show this transform can preserves points, maps a line to a
line, and preserves parallel lines such as the head and tail
of the number 5’s image, ribs in the chest X-ray, and left
and right obturator internus of pelvis MRI. This transform

also preserves ratios of distances between points lying on a
straight line. For example, the distance between the two sides
(branches) of the number 4’s image at top and bottom, fatty
tissues in the mammogram, and Cerebellar hemisphere in the
head computed tomography (CT). However, this transform
may result in loss of resolution or a part of image as shown
for the head CT, and chest X-ray. The resulted images from
radial transform show that it preserves the local and global
spatial features in the neighborhood of the pole. This trans-
form up-samples the pixels sitting in close spatial proximity
of the pole and down-samples the pixels distant to the spa-
tial neighborhood of the pole. Despite the Affine transform,
the radial transform does not necessarily preserve the paral-
lel lines or distances between two specific point. However, it
defines a logical relationship among the pixels based on the
sampling in polar coordinate system.

The accuracy (υ), top-one probability confidence (κ),
and converged-in iteration (ξ) of AlexNet and GoogLeNet
are presented in Table 1. The performance values per im-
age class for original dataset size of 20 and corresponding
Affine and radial transformed images are presented in Ta-
bles 2 and 3 (due to lack of space, the data size of 20
is only presented). The accuracy of class c is defined as
υc =

∑|S|
s=1 I[c = arg max(ps,1, ..., ps,C)]/|S| where S

is the test dataset, C is the number of classes, pc,s is the
classification probability of the data sample s for class c,
and I[x] is defined to be 1 if x is true, and 0 if it is false.
The top-one probability confidence of class c is defined as
κc = (

∑|S|
s=1 ps,c)/|S|.

The results clearly show that the models trained with ra-
dial transformed data have better performance. At compet-
itive accuracy, the confidence of models trained with radial
transform is greater. The difference in accuracy of the trained
models is more obvious for the MNIST dataset, likely due to
the correlation among the medical images such as between
Transverse abdomen MRI and Sagittal abdomen MRI.

The accuracy of the model on the validation dataset



Table 1: The accuracy (“υ” in %), top-one probability confidence value (“κ” in %), and converged-in iteration (ξ) of AlexNet and GoogLeNet
models on the test dataset trained with original, Affine transform, and radial transform augmented MNIST and medical multimodal images.
“Std” is the standard deviation. The best result is in boldface.

Model Transform

Number of Original Images per Class
MNIST Medical Multimodal

20 40 20 40
υ κ ξ υ κ ξ υ κ ξ υ κ ξ

GoogLeNet
Original 45.62±1.91 28.67±2.28 48 69.39±0.73 67.00±0.69 42 83.00±2.51 78.93±2.32 40 98.33±0.81 95.95±0.81 26
Affine 11.16±0.10 12.86±0.01 2 59.11±0.56 56.88±0.61 19 48.28±0.72 55.21±0.70 12 61.42±1.02 58.92±0.95 16
Radial 97.98±1.39 99.39±1.22 13 91.96±0.89 92.72±0.93 15 94.48±1.36 97.33±1.42 8 99.21±0.92 99.14±0.98 8

AlexNet
Original 82.26±1.06 84.35±1.28 33 83.60±0.51 83.30±0.56 40 89.01±1.28 88.14±1.39 21 98.04± 0.61 98.33± 0.58 25
Affine 32.52±0.43 33.54±0.48 43 38.50±0.52 37.17±0.59 48 52.80±0.78 46.61±0.89 15 47.66±0.82 43.46±0.89 7
Radial 98.29±0.96 98.57±0.98 19 95.18±0.74 94.36±0.69 17 97.05±1.01 99.34±1.21 4 99.54±0.66 98.01±0.51 4

Table 2: The accuracy (“υ” in %) and top-one probability confidence value (“κ” in %) of AlexNet and GoogLeNet models on the test dataset
trained with original, Affine transform, and radial transform augmented medical multimodal images. The dataset size is 20 and 2,000 per
class for the original and transformed images, respectively.

Model Transform
Category

Coronal Abd. Trans. Abd. Sagittal Abd. Breast MRI Chest X-Ray Head CT Lung CT Mammogram Pelvis MRI
υ κ υ κ υ κ υ κ υ κ υ κ υ κ υ κ υ κ

GoogLeNet
Original 92.18 78.21 89.99 89.98 30.78 53.12 94.44 67.13 75.24 89.13 75.24 89.13 96.24 72.78 98.03 88.19 94.87 82.70
Affine 1.00 13.73 1.00 16.83 48.00 52.26 95.82 83.94 79.22 70.29 82.53 78.49 27.00 52.34 65.00 74.83 35.00 48.83
Radial 98.12 99.59 99.90 94.92 82.53 86.18 97.25 99.15 85.17 97.84 90.17 99.37 99.33 99.14 99.79 99.82 98.06 99.99

AlexNet
Original 96.00 91.51 95.10 97.00 54.28 89.25 97.00 99.97 93.18 92.69 87.91 89.07 92.37 91.80 94.03 90.04 91.30 90.87
Affine 1.00 12.67 0.00 0.00 69.00 65.22 96.03 84.20 71.45 69.19 81.77 85.28 54.00 66.29 68.00 73.92 34.00 52.91
Radial 98.96 99.60 99.70 99.91 86.31 95.38 99.90 99.98 99.99 99.99 89.17 99.38 100.00 99.99 99.49 99.91 100.00 99.99

Table 3: The accuracy (“υ” in %) and top-one probability confidence value (“κ” in %) of AlexNet and GoogLeNet models on the test dataset
trained with original, Affine transform, and radial transform augmented MNIST images. The dataset size is 20 and 2,000 per class for the
original and transformed images, respectively.

Model Transform
Category

0 1 2 3 4 5 6 7 8 9
υ κ υ κ υ κ υ κ υ κ υ κ υ κ υ κ υ κ υ κ

GoogLeNet
Original 21.29 22.60 96.14 89.98 16.69 19.57 48.44 18.84 66.22 33.27 23.49 17.22 48.08 17.59 72.93 30.17 25.96 16.96 37.04 20.57
Affine 0.54 13.19 90.00 13.86 1.00 17.30 2.47 16.83 1.25 17.92 3.12.00 15.24 3.01 15.92 0.00 0.00 1.20 17.91 1.00 19.30
Radial 98.25 99.35 97.24 98.98 98.22 99.41 99.09 99.74 98.40 99.61 96.92 99.37 98.98 99.59 97.60 99.25 97.64 99.46 97.54 99.23

AlexNet
Original 83.65 90.01 96.24 95.77 79.62 85.57 60.19 71.31 92.67 89.71 59.99 74.45 89.55 84.67 90.73 91.74 82.65 77.36 87.30 82.87
Affine 57.75 46.81 87.46 40.15 9.78 46.00 21.79 57.47 26.55 30.03 12.32 47.24 17.16 35.06 26.65 41.25 33.11 37.62 32.70 45.24
Radial 99.37 99.02 98.76 99.21 98.45 98.38 99.52 99.26 99.22 98.74 97.34 98.37 98.29 98.98 97.90 98.00 96.62 97.93 97.42 97.81

Fig. 3: Accuracy of the AlexNet (AN) and GoogLeNet (GN), trained
with original (Org), Affine transformed (AF), and radial transformed
(RT) images on MNIST (MN) and medical multimodal (MM) vali-
dation datasets.

through training iterations for a single experiment is pre-
sented in Figure 3. The converged-in iteration ξ in Table 1
and this figure show that the models trained with radial trans-

formed images D3 converge faster with higher accuracy than
models trained with D1 and D2. AlexNet and GoogLeNet
trained with very limited original images show fluctuation of
validation accuracy during training. GoogLeNet has more
fluctuation, particularly due to having more number of free
parameters than AlexNet. The same models trained with
augmented images using radial transform show smoother
convergence and less fluctuation of the validation accuracy.

4. CONCLUSION

Successful training of deep neural networks requires a large
quantity of balanced data. In practice, most of the datasets are
imbalanced and often very limited data is available for certain
classes in a dataset. In this paper, we propose image augmen-
tation using radial transform in the polar coordinate system
to facilitate training of deep neural networks. This method
preserves the information content of the original image, but
improves the diversity of the training dataset, resulting in im-
proved generalization performance of the neural network.
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