
DEEP CNN BASED FEATURE EXTRACTOR FOR TEXT-PROMPTED SPEAKER
RECOGNITION

Sergey Novoselov1,2, Oleg Kudashev2, Vadim Schemelinin1, Ivan Kremnev3, Galina Lavrentyeva1

1ITMO University, St.Petersburg, Russia
2STC-innovations Ltd., St.Petersburg, Russia

3STC Ltd., St.Petersburg, Russia

{novoselov,kudashev,shchemelinin,kremnev,lavrentyeva}@speechpro.com

ABSTRACT

Deep learning is still not a very common tool in speaker ver-
ification field. We study deep convolutional neural network
performance in the text-prompted speaker verification task.
The prompted passphrase is segmented into word states —
i.e. digits — to test each digit utterance separately. We train
a single high-level feature extractor for all states and use co-
sine similarity metric for scoring. The key feature of our net-
work is the Max-Feature-Map activation function, which acts
as an embedded feature selector. By using multitask learning
scheme to train the high-level feature extractor we were able
to surpass the classic baseline systems in terms of quality and
achieved impressive results for such a novice approach, get-
ting 2.85% EER on the RSR2015 evaluation set. Fusion of the
proposed and the baseline systems improves this result.

Index Terms— speaker verification, text-prompted, deep
features, CNN, max-feature mapping

1. INTRODUCTION

I-vector-based systems are well known to be state-of-the-art
solutions to the text-independent speaker verification problem
[1, 2, 3]. Nonetheless, this problem is gradually gaining atten-
tion from the deep learning perspective. Particularly, studies
[2, 4] make use of the ASR deep neural network (ASR DNN)
in order to divide acoustic space into senone classes, and the
classic total variability (TV) model is applied to discriminate
between speakers in that space afterwards [1].

In such phonetic discriminative DNN-based systems two
major techniques can be distinguished. The first one uses
DNN posteriors to calculate Baum-Welch statistics, and the
second one uses bottleneck features in pair with speaker spe-
cific features (MFCC) for a full TV-UBM system training.

Recent publications [5, 6, 7, 8] suggest that substantial ad-
vancement of the state-of-the-art text-dependent verification
systems is mainly based on progress in the text-independent
speaker recognition task. Therefore, successful application of

a phonetic discriminative DNN to the latter task justifies em-
ployment of a similar approach for text-dependent systems
[9, 10, 11].

On the other hand, direct speaker discrimination is the
most natural way of speaker verification. There are several
profound studies on advantageous usage of deep end-to-
end solutions for discriminating speakers directly in a text-
dependent task [12, 13]. Paper [14] describes a DNN that
extracts a small speaker footprint that is used to discriminate
between speakers. Paper [15] presents a well performing
implementation of a DNN extractor based on the speaker
discriminative approach in the text-independent task.

This paper focuses on the text-prompted speaker verifica-
tion scenario. It does not require user to remember a specific
passphrase and reduces risk of replay attacks on the system.
Previously, we have shown that by segmenting a passphrase
into word states prior to supervector extraction we were able
to construct more accurate statistical models of speech signals
[7, 8]. The present study continues with this approach and
suggest ways of further improvement of deep speaker verifi-
cation systems.

This work exploits the deep convolutional neural network
(CNN) with Max-Feature-Map activation function (MFM)
from [16, 17], which is based on maxout activation function,
for direct speaker discrimination in the text-dependent set-
ting. We train a deep high-level feature extractor for prompted
passwords. The experiments were mainly conducted on Part
3 of the RSR2015 database [18], which contains series of ran-
domized digit sequences representing passwords. The results
of the proposed and the baseline systems are compared in
section 5.

In addition, we analyze performance of the proposed sys-
tem on the training data extended with English (Wells Fargo
Bank) and Russian (STC-Russian-digits) digits subcorpora.
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2. BASELINE SYSTEMS

This section briefly describes three state-of-the-art text-
dependent speaker verification systems, which are further
referred as baseline systems. To do passphrase segmenta-
tion, we use hidden Markov model (HMM) based Viterbi
alignment. The frontend of the baseline systems computes
mel-frequency cepstral coefficients (MFCC) as well as their
first and second time derivatives to yield a 39-dimensional
vector per frame. Framing is done every 8 ms with a 16 ms
window. A gaussian mixture model (GMM) based voice ac-
tivity detector is used to find and remove non-speech frames.
We also apply cepstral mean subtraction (CMS) and do not
apply feature warping to cepstral coefficients.

2.1. GMM-SVM

The baseline GMM-SVM system is implemented in accor-
dance to [6]. The GMM mean supervector ~m is obtained
from a relevant maximum a posteriori (MAP) adaptation of
the speaker-independent universal background model (UBM)
of a passphrase. No segmentation is done by this system. We
trained a passphrase UBM on the RSR2015 database devel-
opment set. To compensate for inter-speaker variability, Nui-
sance Attribute Projection (NAP) is applied. Support Vector
Machine (SVM) is used as a backend classifier. Finally, score
s-normalization is done.

2.2. State-GMM-SVM

In this system HMM segmentation is used to split a passphrase
into individual digits. For each digit a State-GMM mean
supervector is extracted as described in [7]. Each state is
associated with a unique speaker-independent UBM, which
is trained on the RSR2015 database training set. The speaker-
dependent GMM means of a state are obtained through MAP
adaptation of the UBM means. The speaker-dependent GMM
mean supervector ~m is obtained with concatenation of the
speaker state mean vectors over all states. NAP, SVM and
score s-normalization are also utilized in this system.

We refer to this system as the StGMM-SVM system.

2.3. STATE-PLDA

We have previously shown effectiveness of the State prob-
abilistic linear discriminant analysis (State-PLDA) model
when addressing the text-dependent speaker verification
problem [8].

Log-likelihood ratio score for each digit in a tested utter-
ance can be obtained with PLDA scoring procedure. The final
score for the utterance is calculated as a sum of the llr scores
over its states [8]. No score normalization is needed.

This system is called StPLDA.

3. STATE CNN

Encouraged by the success of our deep learning model in the
replay attack spoofing detection task [17], we endeavour to
improve over the state-of-the-art techniques for text-prompted
speaker verification by employing a similar network architec-
ture.

3.1. Features

Our CNN-based system also operates with distinct states,
and the same HMM-based segmentation is used to split
passphrase into separate digits. We use log mel power spectra
extracted from the speech signal as input features. While the
feature size along the frequency domain axis is fixed to 64
bands, varying utterance time span must be adjusted to a fixed
length of 96 frames, which is an estimation of the longest digit
pronouncement time. This is done either by cropping the end
of features along the time axis or wrap padding as it was done
in [17]. Cepstral mean and variance normalization is done for
each digit.

3.2. MFM CNN architecture

We make use of the Light CNN architecture [16]. MFM acti-
vation function is applied to the feature maps inferred from a
convolutional layer:

yki,j = max(xk
i,j , x

k+N
2

i,j )

i = 1,W , j = 1, H, k = 1,
N

2

(1)

with x being an MFM layer input tensor of shape W ×H×N
and y its output tensor of shape W × H × N

2 . Here i, j
indicates the frequency and time domains and k is the channel
index.

The network itself is composed of several layer groups,
each of them is represented by a convolutional layer followed
by an MFM layer and optionally a pooling layer. These
groups are stacked together and followed by dense layers to
produce embeddings for input log mel power spectra features.
Details are covered in Table 2.

The choice of the MFM activation function is motivated
by the fact that it not only provides ReLU-like activation with
a varying threshold but is also an embedded feature selector
[16].

3.3. Training

There are two ways of training a deep neural network extrac-
tor in the text-prompted scenario. The first one is to train the
network to discriminate between speakers (single task mode)
and the second, more complex one, is to train the network
to discriminate between speakers and digits simultaneously
(multitask mode). The latter approach is used in [19]. We also



exploit the multitask setup and assign an individual class to a
speaker pronouncing a particular digit. Because of this total
amount of classes increases by a factor of 10, i.e. Nspeakers×
Ndigits. The network is trained in multitask mode with mul-
ticlass cross entropy loss function.

3.4. Scoring

After training, the last fully-connected layer with its soft-
max activation is removed from the network in order to ob-
tain an extractor of high-level representations for speaker pro-
nounced digits. At the evaluation step embeddings for each
individual digit utterance are obtained through the network
forward pass. Cosine similarity metric is used afterwards to
compare them with corresponding targets. Each test digit em-
bedding is compared to the same digit embedding from the
enrollment set, which is averaged over 3 enrollment sessions.
Finally, average score of all digits in the passphrase is re-
turned. Note that we do not use any discriminant analysis
backend instead of cosine similarity.

4. EXPERIMENTAL SETUP

4.1. Databases description

We have conducted experiments on Part 3 of the RSR2015
database [18] and on the evaluation part of the STC-Russian-
digits database (STCRus). These datasets contain prompted
passphrases for speaker verification.

The training set is also extended with Wells Fargo Bank
dataset (WF), described in [7], which contains short digit
passphrase utterances, and the training part of STC-Russian-
digits dataset.

STC-Russian-digits is a newly collected database. It
contains utterances of random Russian digit sequences pro-
nounced by native speakers. Each speaker has recorded 1 to 3
sessions, each of them consists of microphone records made
with 3 different devices: an Android-based mobile phone, an
iOS-based mobile phone, and a web-camera. Each record
includes 5 pronunciations of 10 Russian digits in random
order. STC-Russian-digits database is split into training and
evaluation parts according to Table 1.

4.2. CNN parameters

Network parameters are described in Table 2. The last dense
layer is included only at the training stage. The number of its

Table 1. STC-Russian-digits database
Set Males Females Total speakers Total records

Train 473 221 694 15 k
Eval 50 42 92 5 k

Table 2. CNN architecture
Type Filter / Stride Output #Params

Conv1 7× 7 / 1× 1 64× 96× 128 6.4K
MFM1 − 64× 96× 64 −
MaxPool1 2× 2 / 2× 2 32× 48× 64 −
Conv2a 1× 1 / 1× 1 32× 48× 128 8.3K
MFM2a − 32× 48× 64 −
Conv2b 5× 5 / 1× 1 32× 48× 192 153.8K
MFM2b − 32× 48× 96 −
MaxPool2 2× 2 / 2× 2 16× 24× 96 −
Conv3a 1× 1 / 1× 1 16× 24× 192 18.6K
MFM3a − 16× 24× 96 −
Conv3b 5× 5 / 1× 1 16× 24× 256 614.7K
MFM3b − 16× 24× 128 −
MaxPool3 2× 2 / 2× 2 8× 12× 128 −
Conv4a 1× 1 / 1× 1 8× 12× 256 33K
MFM4a − 8× 12× 128 −
Conv4b 3× 3 / 1× 1 8× 12× 128 147.6K
MFM4b − 8× 12× 64 −
Conv5a 1× 1 / 1× 1 8× 12× 128 8.3K
MFM5a − 8× 12× 64 −
Conv5b 3× 3 / 1× 1 8× 12× 128 73.9K
MFM5b − 8× 12× 64 −
MaxPool4 2× 2 / 2× 2 4× 6× 64 −
FC1 − 2048 3147.8K
MFM6 − 1024 −
FC2 − Nout 1024Nout

Total 4366K +
1024Nout

neurons corresponds to the number of classes in a particular
setup, described in 3.3.

The learning rate is decayed by a constant every 10
epochs. Batch size is set to 32.

5. RESULTS AND DISCUSSION

Tables 3, 4 and 5 present equal error rate (EER) and minimum
detection cost function (minDCF) 1 for various systems. The
best performance among baseline systems is demonstrated
by StGMM-SVM, yielding 3.11% EER for pooled male and
female conditions. The speaker discriminative deep CNN
trained in the single task mode (StCNNST ) could not sur-
pass baseline results, achieving only 7.83% EER. However,
it showed significant performance improvement in multitask

1Ptar = 10−2, Cmiss = 10 and Cfa = 1



Table 3. EER [%] (minDCF [%]) for 5-digit password verifi-
cation. Here tr and ev indices stand for training and evaluation
parts of the used data bases.

System Male Female Pooled
GMM -SVM 4.01 (17,91) 2.58 (14.69) 3.37 (16.45)

StGMM -SVM 3.65 (16.29) 2.13 (1.1.06) 3.11 (14.23)

StPLDA 3.37 (17.42) 3.04 (16.1) 4.44 (21.94)

StCNNST 7.06 (37.13) 8.4 (40.62) 7.83 (39.1)

StCNNMT 4.88 (23.6) 5.19 (24.82) 5.12 (24.51)

StCNNMT[
+WF

] 4.16 (19.53) 4.23 (19.9) 4.27 (20.03)

StCNNMT[
+WF+STCRustr

] 2.68 (12.31) 3.13 (14.55) 2.85 (13.36)

Table 4. EER [%] (minDCF [%]) for pooled male-female
case (5-digit password)

System TrainData TestData EER (minDCF)

StCNNMT

RSR2015tr
RSR2015ev

5,12 (24,51)
RSR2015tr +

WF + STCRustr
2,85 (13,36)

STCRustr
STCRusev

5,86 (29,49)
RSR2015tr +

WF + STCRutr
4,24 (20,45)

mode (StCNNMT ) with EER decreased to 5.12%. In con-
trast to GMM-SVM and StGMM-SVM, no score normalization
is needed for StPLDA and StCNN based systems.

Remarkably, when new language corpora with foreign
classes are presented in the training set, the system learns
to discriminate embeddings between speakers for both lan-
guages, based on common speaker variability (see Table
4). Two bottom lines in Table 3 show that the extending
of the training set for the CNN-based system leads to per-
formance boost. The best performing system StCNNMT[
+WF+STCRus

]
we have obtained had been trained on

the pooled English (RSR2015 and WF) and Russian (STC-
Russian-digits) subcorpora. Unlike the baseline systems,
which benefit from training on in-domain data only, the deep
CNN-based system improves from new out-of-domain data
added during the learning phase in the multitask setup. Figure
1 illustrates embedding discriminative capability of the sys-
tem: 5 randomly chosen speaker embeddings are projected
on two principal axes with t-SNE [20].

There are two advantages of using speaker and text dis-
criminative embeddings, trained on English and Russian dig-
its speech signals. First, it automatically validate correctness
of the passphrase. Second, it can be used for both languages
(see Table 4).

Table 5 shows evaluation metrics for the best StCNN sys-
tem fused with baseline systems. Fusion of all systems en-

Fig. 1. Visualizing speakers embeddings using t-SNE. Each
speaker is marked by its color, text indicates pronounced digit

abled us to reduce verification EER on the pooled male and
female 5-digit passphrase test to 1.43%, which is 54% less
than the best single baseline system. Fusion is done with
BOSARIS toolkit [21].

Table 5. Fusion. EER [%] (minDCF [%]) for 5-digit pass-
word verification

System Male Female Pooled
StCNN +
StPLDA 2.05 (9.12) 1.77 (8.62) 2.09 (9.59)

StCNN +
StGMM-SVM 1.61 (7.7) 1.4 (6.43) 1.63 (7.32)

StCNN +
GMM-SVM 1.48 (6.62) 1.56 (8.66) 1.57 (7.72)

All 1.26 (5.02) 1.31 (6.92) 1.43 (6.58)

6. CONCLUSION

This paper proposed a new deep CNN-based solution to the
text-prompted speaker verification problem. A high level fea-
ture extractor was trained to discriminate between speakers
and digits simultaneously, and embeddings can be measured
simply with cosine similarity. By using multitask learning
scheme we were able to surpass the classic baseline systems
in terms of quality and achieved impressive results for such a
novice approach, obtaining 2.85% EER on the RSR2015 eval-
uation set. Fusion of the proposed and the baseline systems
led to almost 50% decrease in EER for all test sets.
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