Loading [a11y]/accessibility-menu.js
Seeing Through Noise: Visually Driven Speaker Separation And Enhancement | IEEE Conference Publication | IEEE Xplore

Seeing Through Noise: Visually Driven Speaker Separation And Enhancement


Abstract:

Isolating the voice of a specific person while filtering out other voices or background noises is challenging when video is shot in noisy environments. We propose audio-v...Show More

Abstract:

Isolating the voice of a specific person while filtering out other voices or background noises is challenging when video is shot in noisy environments. We propose audio-visual methods to isolate the voice of a single speaker and eliminate unrelated sounds. First, face motions captured in the video are used to estimate the speaker's voice, by passing the silent video frames through a video-to-speech neural network-based model. Then the speech predictions are applied as a filter on the noisy input audio. This approach avoids using mixtures of sounds in the learning process, as the number of such possible mixtures is huge, and would inevitably bias the trained model. We evaluate our method on two audio-visual datasets, GRID and TCD-TIMIT, and show that our method attains significant SDR and PESQ improvements over the raw video-to-speech predictions, and a well-known audio-only method.
Date of Conference: 15-20 April 2018
Date Added to IEEE Xplore: 13 September 2018
ISBN Information:
Electronic ISSN: 2379-190X
Conference Location: Calgary, AB, Canada

Contact IEEE to Subscribe

References

References is not available for this document.