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ABSTRACT

This work addresses the problem of determining whether two mul-
tivariate random time series have the same power spectral density
(PSD), which has applications, for instance, in physical-layer se-
curity and cognitive radio. Remarkably, existing detectors for this
problem do not usually provide any kind of optimality. Thus, we
study here the existence under the Gaussian assumption of optimal
invariant detectors for this problem, proving that the uniformly most
powerful invariant test (UMPIT) does not exist. Thus, focusing on
close hypotheses, we show that the locally most powerful invariant
test (LMPIT) only exists for univariate time series. In the multi-
variate case, we prove that the LMPIT does not exist. However,
this proof suggests two LMPIT-inspired detectors, one of which out-
performs previously proposed approaches, as computer simulations
show.

Index Terms— Generalized likelihood ratio test (GLRT), hy-
pothesis test, locally most powerful invariant test (LMPIT), power
spectral density (PSD), uniformly most powerful invariant test
(UMPIT).

1. INTRODUCTION

The problem of determining whether two multivariate time series
possess the same (matrix-valued) power spectral density (PSD)
at every frequency finds many diverse applications, ranging from
the comparison of gas pipes [1], earthquake-explosion discrimina-
tion [2] or light-intensity emission stability determination [3], to
physical-layer security [4] and spectrum sensing [5]. Thus, this
problem has originated an active field of research since it was first
studied by Coates and Diggle [1].

The original work in [1] developed parametric and non-parametric
tests for univariate time series. The statistics for both kinds of tests
are based on the log-ratio of the periodograms of each time series,
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and several ways of fusing the information at different frequencies
are considered. A similar idea is used in [3], where the authors
proposed a semi-parametric log-linear model for the ratio of the pe-
riodograms. The work in [6] derives the generalized likelihood ratio
test (GLRT) for testing whether the PSD of two real multivariate
time series are equal at a given frequency, and the GLRT for two
complex multivariate time series, which combines information from
all frequencies into a single statistic, is considered in [7]. All of the
aforementioned detectors were developed in the frequency domain.
However, time-domain detectors are also possible, like the ones
in [8] and references therein. Additionally, the problem addressed
in this work may be seen as an extension of the classical problem of
testing the homogeneity of covariance matrices [9]. Specifically, we
may apply the statistics for homogeneity at each frequency, and then
many ad-hoc detectors may be developed by appropriately choosing
the function to fuse them.

The aforementioned tests rely either on ad-hoc principles or
asymptotic criteria, such as the GLRT, but little can be said about
their optimality for finite data records. In particular, to the best
of our knowledge, neither the uniformly most powerful invariant
test (UMPIT) nor the locally most powerful invariant test (LMPIT)
have been investigated for the problem at hand. Typically, the
derivation of these optimal tests involve the identification of the
maximal invariant statistic and its distributions, which are usually
very involved, if not impossible, to determine. Hence, similar to
our previous works [10, 11], we use in this paper Wijsman’s theo-
rem [12, 13], which allows us to derive the UMPIT or the LMPIT,
if they exist, without the aforementioned distributions, and even
without identifying the maximal invariant statistic. Exploiting this
powerful theorem and assuming Gaussianity, the main contribution
of this paper is to formally show that the UMPIT does not exist for
testing equality of PSD matrices, the LMPIT only exists for univari-
ate time series, whereas it does not exist for multivariate processes.
The proof of this (negative) result, however suggests two LMPIT-
inspired detectors, one of which presents better performance than
previously proposed schemes.

2. PROBLEM FORMULATION

Given two L-variate time series, x1[n] ∈ CL and x2[n] ∈ CL
for n = 0, . . . , N − 1, which are realizations of zero-mean proper
Gaussian processes, the problem is to determine whether they have
the same power spectral density matrix at all frequencies or, equiva-
lently, the same matrix-valued covariance function at all lags. Defin-
ing now the vectors yi = [xTi [0] · · · xTi [N − 1]]T , and y =



[yT1 yT2 ]T ∈ C2NL, the problem is to decide between the follow-
ing hypotheses:

H1 : y ∼ CN (0,RH1) ,
H0 : y ∼ CN (0,RH0) ,

(1)

where CN (0,RHi) denotes a zero-mean circular complex Gaussian
distribution with covariance matrix RHi . The covariance matrices
under both hypotheses are given by

RH1 =

[
R1 0
0 R2

]
, RH0 =

[
R0 0
0 R0

]
,

where

Ri = E[yiy
H
i ] =

 Mi[0] · · · Mi[−N + 1]
...

. . .
...

Mi[N − 1] · · · Mi[0]

 ,
is a block-Toeplitz covariance matrix built from the covariance func-
tion of xi[n], given by Mi[m] = E[xi[n]xHi [n − m]] and R1 6=
R2. For notational simplicity, we have defined the common covari-
ance sequence under H0 as M0[m] = M1[m] = M2[m]. These
covariance matrices, RHi , are block-diagonal because x1[n] and
x2[n] are independent, and with identical blocks under H0 because
the processes possess the same covariance function.

Block-Toeplitz covariance matrices do not allow the deriva-
tion of closed-form detectors, as we have showed in our previous
works [11, 14, 15]. To avoid this problem, these works considered
an asymptotic approximation of the likelihood, which converges in
the mean-square sense to the true likelihood and is based on a block-
circulant approximation of Ri. Given M independent and identi-
cally distributed (i.i.d.) realizations1 of y, say y(0), . . . ,y(M−1),
the first step to obtain the asymptotic likelihood is to define the
transformation z = [zT1 zT2 ]T , where

zi =
(
FHN ⊗ IL

)
yi = [zTi [0] . . . zTi [N − 1]]T ,

with IL being the identity matrix of size L and FN the Fourier ma-
trix of size N , i.e., zi[k] is the discrete Fourier transform of xi[n] at
frequency θk = 2πk/N . Hence, the asymptotic approximation of
the log-likelihood is

log p(z(0), . . . , z(M−1);SHi) ∝ − log det(SHi)− tr
(
S−1
Hi

Ŝ
)
,

where ∝ denotes equality up to constant terms, det(·) and tr(·) are,
respectively, the determinant and the trace,

Ŝ =
1

M

M−1∑
m=0

z(m)z(m)H ,

and

SH1 =

[
S1 0
0 S2

]
, SH0 =

[
S0 0
0 S0

]
.

Here, Si is a NL×NL block-diagonal matrix whose L×L blocks
are given by the power spectral density, i.e.,

Si,k+1 = Si(e
jθk ) =

N−1∑
n=0

Mi[n]e−jθkn.

1If a single realization is given, it is possible to divide this realization in
M windows, keeping in mind that the realizations will be no longer i.i.d.
as the window borders are correlated. This resembles the Welch method for
PSD estimation.

Using this approximation, the test in (1) becomes

H1 : z(m) ∼ CN (0,SH1) , m = 0, . . . ,M − 1,

H0 : z(m) ∼ CN (0,SH0) , m = 0, . . . ,M − 1.
(2)

3. EXISTENCE OF OPTIMAL INVARIANT TESTS

A well-established rule yielding detectors for hypothesis tests with
unknown parameters, like the one in (2), is the generalized likelihood
ratio test (GLRT). This approach has been adopted in [6–8] to solve
the problem considered in this work under different assumptions re-
garding the signals: univariate/multivariate and real/complex. How-
ever, it is well known that the GLRT does not guarantee optimality
for finite data records [16]. In this section, we study the existence of
optimal tests: the uniformly most powerful invariant test (UMPIT)
and the locally most powerful invariant test (LMPIT).

The first step for deriving invariant detectors is to identify the
problem invariances [17]. A clear invariance consists in identical
MIMO filtering of both time series, defined as x̃i[n] = (H ∗ xi)[n],
where H[n] ∈ CL×L is a filtering matrix and ∗ denotes convo-
lution. Another invariance is the permutation of the time series at
each frequency, that is, it does not matter how we label the processes
on a frequency-by-frequency basis. Finally, since Si, i = 1, 2, are
block-diagonal matrices, we may permute their blocks with the same
permutations, i.e., we apply the same frequency reordering to both
processes. To sum up, the detection problem in (2) is invariant under
the group of transformations G = {g : z 7→ g(z) = G̃z}, where

G̃ = (I2 ⊗G)

(
N∏
k=1

Pk ⊗ IL

)
(I2 ⊗T⊗ IL),

where Pk ⊗ IL is a matrix that permutes z1[k] and z2[k], I2 ⊗
T⊗ IL is a matrix that permutes the frequencies of both processes,
and G is a block-diagonal matrix with L× L invertible blocks Gk,
which accounts for the frequency-domain counterpart of the MIMO
filtering. That is, Pk ∈ Pk, T ∈ T, and Gk ∈ G, where Pk
and T are the set of permutation matrices formed by Pk and T,
respectively, and G is the set of L× L invertible matrices.

Once the group of invariant transformations has been defined,
the typical approach [17] for deriving the UMPIT would involve
finding the maximal invariant statistic, its distributions under both
hypotheses and their ratio. Nonetheless, this process is usually in-
tractable, which could preclude the derivation of the UMPIT. As
an alternative, Wijsman’s theorem [12, 13] allows us to derive the
UMPIT, if it exists, without the need of finding the maximal invari-
ant statistic and its distributions. This theorem states that the ratio of
the distributions of the maximal invariant statistic is given by

L =

∑
T,P1,...,PN

∫
GN

|det(G)|4M exp
{
−M tr

(
S−1
H1

G̃ŜG̃H
)}

dG

∑
T,P1,...,PN

∫
GN

|det(G)|4M exp
{
−M tr

(
S−1
H0

G̃ŜG̃H
)}

dG

,

where GN = G × · · · × G and dG is an invariant measure on
the set GN . If L , or a monotone transformation thereof, does not
depend on unknown parameters it yields the UMPIT. If it does, we
may still find the optimal invariant detector for close hypotheses,
namely the LMPIT. The next step is to simplify L , which is done in
the following lemma.



Lemma 1 The ratio of the distributions of the maximal invariant
statistic simplifies to

L ∝
∑

T,P1,...,PN

∫
GN

N∏
k=1

β(Gk) dGk

× exp

{
−M

N∑
k=1

2∑
i=1

tr
(
Wi,kGkĈπk[i],Π[k]G

H
k

)}
, (3)

where β(Gk) = |det(Gk)|4M exp
{
−2M tr

(
GH
k Gk

)}
, the matrix

Wi,k is given by

Wi,k =

[
1

2

2∑
j=1

S−1
j,k

]−1/2

S−1
i,k

[
1

2

2∑
j=1

S−1
j,k

]−1/2

− IL, (4)

and Ĉπk[i],Π[k] is a permutation of

Ĉi,k =

[
1

2

(
Ŝ1,k + Ŝ2,k

)]−1/2

Ŝi,k

[
1

2

(
Ŝ1,k + Ŝ2,k

)]−1/2

,

with πk[·] and Π[·] being, respectively, permutations in the sets Pk
and T.

Sketch of proof: Let’s start by multiplying Ŝ by the per-
mutation matrices and applying the change of variables GΠ[k] →

GΠ[k]

[(
Ŝ1,Π[k] + Ŝ2,Π[k]

)
/2
]−1/2

to the integrals in the numera-
tor and denominator of L . Subsequently, we also apply the change
of variables Gk → S

1/2
0,kGk to the integral in the denominator,

which yields

L ∝
∑

T,P1,...,PN

∫
GN

|det(G)|4M

× exp
{
−M tr

(
S−1
H1

(I2 ⊗G)Ĉπ(I2 ⊗GH)
)}

dG,

where

Ĉπ =(
N∏
k=1

Pk ⊗ IL

)
(I2⊗T⊗IL)Ĉ(I2⊗TT⊗IL)

(
N∏
k=1

PT
k ⊗ IL

)

and Ĉ = diag(Ĉ1, Ĉ2) is a block-diagonal matrix with Ĉi =

diag(Ĉi,1, . . . , Ĉi,N ) also being a block-diagonal matrix. The
proof concludes by applying the change of variables Gk →(
S−1

1,k/2 + S−1
2,k/2

)−1/2

Gk, exploiting the block-diagonal struc-
ture of the matrices and the decomposition in (4).

To provide some intuition about Lemma 1, note that L in (3)
depends on the observations only through Ĉπ , which is similar to
a coherence matrix. However, it is not exactly a coherence matrix
since it is not whitened by its individual blocks but by the average
thereof. Under H0, Ĉπ ≈ I, whereas it is expected to significantly
differ from I under H1. Thus, any detector for this problem should
measure how close Ĉπ is to I. How we measure this distance will
reach different detectors and our objective is therefore finding the
measure that results in an optimal detector.

Unluckily, as can be seen in (3), the ratio L depends on SH1 ,
which is unknown, therefore proving that the UMPIT does not exist

for this problem. Hence, we focus hereafter on the case of close
hypotheses, i.e., the PSD matrix of x1[n] is very similar to that
of x2[n]. In this case, S1,k ≈ S2,k, which in turn implies that
Wi,k ≈ 0. Under this assumption, the exponent term in (3) be-
comes small and allows us to perform a Taylor series expansion of
exp(−α) around α = 0, yielding

L ∝
∑

T,P1,...,PN

∫
GN

N∏
k=1

β(Gk)dGk

×

{
2M

N∑
k=1

2∑
i=1

tr
(
Wi,kGkĈπk[i],Π[k]G

H
k

)

+M2

[
N∑
k=1

2∑
i=1

tr
(
Wi,kGkĈπk[i],Π[k]G

H
k

)]2
 (5)

Let us now simplify (5) exploiting the next lemma.

Lemma 2 The linear term is zero.

Ll ∝
∑

T,P1,...,PN

∫
GN

N∏
k=1

β(Gk)dGk

×
N∑
k=1

2∑
i=1

tr
(
Wi,kGkĈπk[i],Π[k]G

H
k

)
= 0 (6)

Sketch of proof: The linear term may be rewritten as

Ll ∝
∑
T

N∑
k=1

2∑
l1,...,lN=1

∫
G
β(Gk)tr

(
GkĈlk,Π[k]G

H
k W̄k

)
dGk,

where W̄k =
∑2
i=1 Wi,k and we have used

∑
πk
f(πk[n]) =∑

lk
f(lk). The proof concludes by noting that W̄k = 0.

Taking into account Lemma 2, L only depends on the quadratic
term, which will be simplified in the following theorem. Due to
space constraints, the proof is omitted.

Theorem 1 The ratio of the distributions of the maximal invariant
statistic is given by

L ∝
2∑
i=1

N∑
k=1

‖Ĉi,k‖2 + α

2∑
i=1

N∑
k=1

tr2(Ĉi,k), (7)

where ‖ · ‖2 denotes the Frobenius norm and α is a constant that
depends on SH1 .

Since L still depends on the unknown parameters of the distribution
(through the constant α), it follows that the LMPIT does not exist.
However, there exists one exception, and for univariate time series,
the LMPIT does indeed exist, as we show next.

Corollary 1 For L = 1, both terms in (7) are identical (up to α).
Hence, in this particular case, the LMPIT exists and is given by

L ∝
2∑
i=1

N−1∑
k=0

Ŝ2
i (ejθk )[

1

2

(
Ŝ1(ejθk ) + Ŝ2(ejθk )

)]2 .
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Fig. 1: Probability of missed detection for an experiment with L =
5, Q = 1, M = 4, N = 128 and ∆h = 0.1.

Due to the non-existence of the LMPIT for multivariate processes,
we propose to use each of the two terms in (7) independently as de-
tectors, which can be regarded as LMPIT-inspired detectors. These
two detectors are

L1 =

2∑
i=1

N−1∑
k=0

‖Ĉi(e
jθk )‖2F , L2 =

2∑
i=1

N∑
k=1

tr2(Ĉi(e
jθk )),

where Ĉi(e
jθ) = Ŝ

−1/2
0,ML (ejθ)Ŝi(e

jθ)Ŝ
−1/2
0,ML (ejθ),with Ŝ0,ML(ejθ) =

(
∑2
i=1 Ŝi(e

jθ))/2. Let us provide some insight for these two detec-
tors. Under H0, similar to what has been said before, we have that
Ĉi(e

jθ) ≈ I, ∀θ. Thus, these two detectors are just different ways
of measuring the distance between Ĉi(e

jθ) and I. The first one uses
the Frobenius norm to fuse the information, whereas the last one
uses the trace. Hence, L1 exploits more efficiently the information
provided by cross-spectral densities within each multivariate time
series, and this results in a better performance as we will show later.
For this reason, we encourage to only use L1.

4. NUMERICAL RESULTS

In this section, we analyze the performance of the two proposed de-
tectors by means of numerical simulations and compare them with
the GLRT derived in [7], which may be expressed as

log G ∝
2∑
i=1

N−1∑
k=0

log det
(
Ĉi(e

jθk )
)
.

In particular, we consider the following model

xi[n] =

T−1∑
τ=0

Hi[τ ]si[n− τ ] + vi[n], i = 1, 2,

where si[n] ∈ CQ are independent multivariate signals whose
components are QPSK with unit energy, vi[n] ∈ CL are inde-
pendent noises with variance σ2, which are spatially and tempo-
rally white, and H1[n] is a Rayleigh MIMO channel with unit
energy and spatially uncorrelated. Moreover, H1[n] has an ex-
ponential power delay profile with parameter ρ, and H2[n] =

−4 −2 0 2 4
10−4
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100

SNR (dB)

p
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Fig. 2: Probability of missed detection for an experiment with L =
5, Q = 5, M = 8, N = 128 and ∆h = 0.1.

√
1−∆hH1[n] +

√
∆hE[n], with E[n] sharing the same prop-

erties as H1[n]. Thus, ∆h = 0 implies that the signals have the
same PSD (H0), and 0 < ∆h ≤ 1 measures the distance between
both hypotheses. For the simulations, we have considered L = 5,
T = 20 taps, ρ = 0.75, and ∆h = 0.1.

In the first example, we compare the probability of missed
detection (for pfa = 10−2) of the GLRT and the two LMPIT-
inspired detectors against the signal-to-noise ratio, which is defined
as SNR (dB) = −10 log10 σ

2. Concretely, we have considered
Q = 1 and just one realization of 512 samples, which was divided
into M = 4 windows of length N = 128 samples. As can be
seen in Figure 1, the LMPIT-inspired detector L1 presents the best
performance for the studied range of SNRs, even better than the
GLRT. Moreover, detector L2 performs very poorly, which suggests
that this trace-based detector is not a good choice.

The second example compares again the probability of missed
detection (for pfa = 10−2) of the previous detectors for Q = 5 and
one realization of 1024 samples, which was divided into M = 8
windows of length N = 128 samples. Even in this scenario, which
should be more favorable for the GLRT, L1 still presents the best
performance, as shown in Figure 2. Note that L2 does not perform
well again. In the light of these results, we recommend using L1.
One final comment is in order regarding the threshold selection. Due
to the test invariance to MIMO filtering, the detection thresholds may
be obtained via Monte Carlo simulations for the case of S1(ejθ) = I
and S2(ejθ) = I, which are also valid for any other case.

5. CONCLUSIONS

In this work we have addressed the problem of testing whether two
multivariate time series have the same power spectral density (PSD).
Contrary to previous works, we have assessed the existence of op-
timal invariant detectors. Concretely, we proved that the uniformly
most powerful invariant test (UMPIT) does not exist. Then, focusing
on close hypothesis (i.e. similar PSD matrices), we proved that the
locally most powerful invariant test (LMPIT) only exists for univari-
ate processes, while in the general multivariate case it does not exist.
Nonetheless, inspired by the proof of this result, we have studied two
detectors, one of which exhibits very good performance. This fact
was confirmed by extensive Monte Carlo simulations.
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