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ABSTRACT

The orthogonal matching pursuit (OMP) algorithm is a com-

monly used algorithm for recovering K-sparse signals x ∈
R

n from linear model y = Ax, where A ∈ R
m×n is a sens-

ing matrix. A fundamental question in the performance analy-

sis of OMP is the characterization of the probability that it can

exactly recover x for random matrix A. Although in many

practical applications, in addition to the sparsity, x usually

also has some additional property (for example, the nonzero

entries of x independently and identically follow the Gaus-

sian distribution), none of existing analysis uses these prop-

erties to answer the above question. In this paper, we first

show that the prior distribution information of x can be used

to provide an upper bound on ‖x‖21/‖x‖22, and then explore

the bound to develop a better lower bound on the probability

of exact recovery with OMP in K iterations. Simulation tests

are presented to illustrate the superiority of the new bound.

Index Terms— Exact sparse signal recovery, orthogonal

matching pursuit (OMP), exact recovery probability

1. INTRODUCTION

In many applications, such as sparse activity detection [1], we

need to reconstruct a K-sparse signal x (i.e., x has at most K
nonzero entries) from linear measurements:

y = Ax, (1)

where A ∈ R
m×n (m ≪ n) is a random sensing matrix

with independent and identically distributed (i.i.d.) Gaussian

N (0, 1/m) entries and y ∈ R
m is a given observation vector.

Numerous sparse recovery algorithms have been developed

to recover x based on y and A [2–4]. Among them, greedy

algorithms are very popular, especially when m,n and/or K
are large, due to their low computational complexities. The

orthogonal matching pursuit (OMP) algorithm [5], which is

described in Algorithm 1, is a widely-used greedy algorithm

due to its high efficiency and effectiveness [6].
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A fundamental question in the analysis of OMP is the

characterization of its exact recovery capability. To this end,

numerous works studied the recovery performance of OMP

(see, e.g., [7–13]). In particular, [14] develops a lower bound

on the probability of exact recovery of K-sparse x with K
iterations of OMP. To better understand its recover capability,

it is natural to ask whether this lower bound can be improved.

In many practical applications, in addition to sparsity, x

also has some other properties. For example, in wireless com-

munication problems involving the Rayleigh channel model,

the nonzero entries of x independently and identically follow

the standard Gaussian distribution N (0, 1) [1]. In speech

communication [15] and audio source separation [16], x has

exponentially decaying property, i.e., x is a K-sparse α-

strongly-decaying signal. Intuitively, a larger variation in the

magnitudes of the nonzero entries of x would typically lead

to better exact recovery performance of OMP in K iterations.

This paper aims to develop a theoretical framework to

capture the dependence of the exact recovery performance of

OMP on the disparity in the magnitudes of the nonzero entries

of x. Toward this end, we define the following measure of the

disparity, in term of a function φ(t), such that

‖xS‖21 ≤ φ(|S|)‖xS‖22 (2)

for any set S ⊆ Ω, whereΩ is the support of x, |S| denotes the

number of elements of S and φ(t) is a nondecreasing function

of t > 0 with 0 < φ(t) ≤ t. Note that by the Cauchy-Schwarz

inequality, (2) with φ(t) = t holds for any K-sparse signal x.

Furthermore, (2) with φ(t) much smaller than t holds for α-

strongly-decaying signals and random signals (more details

will be provided in Sec. 2).

In this paper, we develop a lower bound on the proba-

bility of the exact recovery for K-sparse signals x that sat-

isfy (2), using K-iterations of OMP, as a function of φ(t).
Since the bound depends on the function φ(t), we develop

closed-form expressions of φ(t) for general K-sparse signals,

K-sparse α-strongly-decaying signals, and K-sparse signals

whose nonzero entries independently and identically follow

the N (0, 1) distribution, leading to exact lower bounds for

these three classes of sparse signals.
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Algorithm 1 The OMP Algorithm [5]

Input: y, A, and stopping rule.

Initialize: k = 0, r0 = y,S0 = ∅.

until the stopping rule is met

1: k = k + 1,

2: sk = argmax
1≤i≤n

|〈rk−1,Ai〉|,

3: Sk = Sk−1

⋃{sk},

4: x̂Sk
= argmin

x∈R
|Sk|

‖y −ASk
x‖2,

5: rk = y −ASk
x̂Sk

.

Output: x̂ = argmin
x:supp(x)=Sk

‖y −Ax‖2.

2. MAIN RESULTS

In the following, we provide a lower bound on the probability

that OMP can exactly recover any K-sparse signal x satisfy-

ing (2) in K iterations for random sensing matrix A.

Theorem 1 Let A ∈ R
m×n be a random matrix with i.i.d.

N (0, 1/m) entries, and x be a K-sparse signal that satisfies

(2) for some particular φ(t). Define the event S as

S = {OMP can exactly recover x in (1) in K iterations}.
(3)

Denote interval I =

(

0, 1−
√

K
m −

√

2φ(K)
mπ

]

, then

P(S) ≥ max
ǫ∈I

(1− e−
ǫ2m
2 )

K
∏

k=1



1− e−
η2m
2φ(k)

√

πm
2φ(k)η





(n−K)

,

(4)

where η = 1−
√

K/m− ǫ.

The proof of Theorem 1 can be found in the journal ver-

sion of this paper. In the following, we give some remarks.

Theorem 1 is important from both theoretical and prac-

tical applications points of view. Theoretically, Theorem 1

characterizes the recovery performance of OMP. In practical

applications, we can use (4) to give a lower bound on P(S). If

the lower bound is large, saying close to 1, then we are con-

fident to use the OMP algorithm to do the reconstruction. If

the lower bound is small, saying much smaller than 1, then

another more effective recovery algorithm (such as the basis

pursuit [2]) may need to be used.

As far as we know, Theorem 1 gives the first lower bound

on P(S) by using the extra information (i.e., inequality (2)) of

the K-sparse signal x. Note that [14, Theorem 6] also gives a

lower bound on P(S), but it only uses the K-sparsity property

of x. Since Theorem 1 uses not only the sparsity of x but

also its additional property (2) to derive the lower bound, it

provides a sharper lower bound on P(S) than [14, Theorem

6]. More details on the comparison of the two lower bounds

are presented in Sec. 3.

Theorem 1 can theoretically explain that OMP has better

recovery ability in recovering sparse signals with larger varia-

tion of the magnitudes of their nonzero entries. Specifically, it

is not hard to see that the right-hand side of (4) becomes larger

as φ(t) (or equivalently
‖xS‖1

‖xS‖2
(see (2))) becomes smaller. By

the Cauchy-Schwarz inequality,
‖xS‖1

‖xS‖2
achieves the maximal

value
√

|S| when the magnitudes of all the entries of xS are

the same. Hence, the probability of exact recovery of K-

sparse x, whose non-zero entries have identical magnitudes,

has the smallest lower bound. On the other hand, if the vari-

ation of the magnitudes of the nonzero entries of x are large,

then
‖xS‖1

‖xS‖2
is small, and hence the right-hand side of (4) is

large. Therefore, generally speaking, the probability of the

exact recovery of this kind of K-sparse signals x is large.

As (4) depends on φ(t), to lower bound P(S), we need to

know φ(t). In the following, we give closed-form expressions

of φ(t) for three cases. We begin with the first case where

we only know that x is K-sparse. By the Cauchy-Schwarz

inequality, one can see that (2) holds if φ(t) = t. Hence, by

Theorem 1, we have

Corollary 1 Let A ∈ R
m×n be a random matrix with i.i.d.

N (0, 1/m) entries and x be an arbitrary K-sparse signal.

Then (4) holds with φ(t) = t.

Note that [14, Theorem 6] shows that

P(S)

≥ max
ǫ∈(0,

√
m/K−1)

(1− e−
ǫ2m
2 )

(

1− e−
(
√

m/K−1−ǫ)2

2

)K(n−K)

(5)

where the event S is defined in (3). Since the lower bounds

on P(S) given by Corollary 1 and (5) are complicated, it is

difficult to theoretically compare them. However, from the

simulation results in Sec. 3, one can see that the new bound

given by Corollary 1 is much sharper than that given by (5).

Next, we give a lower bound on P(S) for recovering α-

strongly-decaying signal. First, we state the precise definition

of α-strongly-decaying signals as follows:

Definition 1 ( [10]) Without loss of generality, let all the en-

tries of K-sparse x be ordered as

|x1| ≥ |x2| ≥ . . . ≥ |xK | ≥ 0, xj = 0, for K + 1 ≤ j ≤ n.

Then x is called as a K-sparse α-strongly-decaying signal

(α > 1) if |xi| ≥ α|xi+1|, 1 ≤ i ≤ K − 1.

The following lemma provides a closed-form expression

of φ(t) for K-sparse α-strongly-decaying signals.
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Fig. 1. φ(t) versus α with α = 1, 1.5, 2, 2.5

Lemma 1 Let x be a K-sparse α-strongly-decaying signal,

then (2) holds with

φ(t) =
(αt − 1)(α+ 1)

(αt + 1)(α− 1)
, t > 0. (6)

The proof of Lemma 1 can be found in the journal version

of this paper.

To show how large the φ(t) in (6) is, we plot it for differ-

ent values of α in Fig.1, where for comparison, we also plot

φ(t) = t (note that this is equivalent to the α = 1 case as

lim
α→1

φ(t) = t). Fig. 1 shows that φ(t) is much smaller than t

for large t and/or α.

Theorem 1 and Lemma 1 implies the following corollary:

Corollary 2 Let A ∈ R
m×n be a random matrix with i.i.d.

N (0, 1/m) entries, andx be a K-sparseα-strongly-decaying

signal. Then (4) holds with φ(t) being defined in (6).

Since φ(t) in (6) is much smaller than t when t and/or α
is large (see Fig. 1), the right-hand side of (4) with φ(t) being

defined in (6) can be much larger than that with φ(t) = t.
This essentially implies that P(S) is larger for recovering α-

strongly-decaying sparse signals than that for recovering flat

sparse signals (i.e., the magnitudes of all the nonzero entries

are identical). More details on this are given in Sec. 3.

Finally, we consider the recovery of random signals x.

Specifically, we assume that x is K-sparse with xΩ ∼
N (0, σ2I) for certain σ. This kind of sparse signals arise

from many applications, such as sparse activity users de-

tection [1]. If xΩ ∼ N (0, σ2I), then xΩ/σ ∼ N (0, I).

Since
‖xS‖1

‖xS‖2
= ‖xS/σ‖1

‖xS/σ‖2
, to find a function φ(t) such that (2)

holds for K-sparse signal x satisfying xΩ ∼ N (0, σ2I), we

only need to find a φ(t) such that (2) holds for K-sparse x

satisfying xΩ ∼ N (0, I). Since x is a random signal, it is

impossible to find a φ(t) such that (2) always holds. But we

can find a φ(t) such that (2) holds with high probability.
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Fig. 2. The empirical probability of ‖x‖21/‖x‖22 ≤ φ(t) over

50000 realizations of x ∈ R
t ∼ N (0, I)

If xΩ ∼ N (0, I), then the expected value of ‖x‖21 divided

by the expected value of ‖x‖22 equals to
√

2/π|Ω|. Therefore,

we may try φ(t) =
√

2/πt. However, from simulations, we

found that (2) does not hold with high probability when |Ω|
is small. Fortunately, φ(t) defined in (7) below is a suitable

function to ensure (2) holds with high probability:

φ(t) =











0.8 t t ≥ 30

24 25 ≤ t ≤ 29

t t ≤ 24

. (7)

Fig. 2 shows the probability of ‖x‖21/‖x‖22 ≤ φ(t) for

t = 1, 2 . . . , 50 over 50000 realizations, where φ(t) is defined

in (7). From Fig. 2, one can see that (2) holds with φ(t) in

(7) with probability larger than 0.996. Hence, we have the

following observation:

Observation 1 Suppose that A ∈ R
m×n is a random matrix

with i.i.d. N (0, 1/m) entries, and x is a K-sparse signal sat-

isfying xΩ ∼ N (0, σ2I) for certain σ. Then (4) holds with

φ(t) being defined in (7) with empirical probability larger

than 0.996.

Fig. 2 indicates that (2) holds with φ(t) being defined in

(7) with probability larger than 0.996. Since φ(t) being de-

fined in (7) is much smaller than φ(t) = t for large t, Obser-

vation 1 essentially implies that P(S) is larger for recovering

Gaussian sparse signals than that for recovering flat sparse

signals. More details on this will be provided in Sec. 3.

3. SIMULATION TESTS

This section performs simulations to illustrate Theorem 1,

Corollaries 1–2 and Observation 1 and compare them with

[14, Theorem 6].
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Fig. 3. Recovery of K-sparse flat signals
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Fig. 4. Recovery of K-sparse 1.1-strongly-decaying signals

We generated 1000 realizations of linear model (1). More

specifically, for each fixed m, n and K , for each realization,

we generated an A ∈ R
m×n with i.i.d. N (0, 1/m) entries;

we randomly selected K elements from the set {1, 2, . . . , n}
to form the support Ω of x; and then generated an x ∈ R

n

according to the following four cases: 1) xi = 1 for i ∈ Ω and

xi = 0 for i /∈ Ω; 2) The i-th element of xΩ is 1.1K−i for i ∈
Ω and xi = 0 for i /∈ Ω; 3) The i-th element of xΩ is 1.2K−i

for i ∈ Ω and xi = 0 for i /∈ Ω; 4) xΩ = randn(K, 1) and

xΩc = 0, where randn is a MATLAB built-in function. After

generating A and x, we set y = Ax. Then, we use OMP to

reconstruct x, and denote the number of exactly recovery of

x (note that x is thought as exactly recovered if the 2-norm of

the difference between the returned x and generated x is not

larger than 10−10) over 1000 as “Empirical”.

We respectively compute the right-hand side of (4) with

φ(t) = t, φ(t) defined by (6) with α = 1.1 and α = 1.2
and φ(t) defined by (7) for the four cases, and denote them

as “New BD”. To compare Corollaries 1–2 and Observation

1 with [14, Theorem 6], we also compute the right-hand side

of (5) and denote it as “Existing BD”. Since the lower bound
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Fig. 5. Recovery of K-sparse 1.2-strongly-decaying signals
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Fig. 6. Recovery of K-sparse Gaussian signals

on P(S) given by [14, Theorem 6] uses the sparsity of x only,

“Existing BD” are the same for all the four cases.

Figs. 3-6 respectively display “Empirical”, “New BD”

and “Existing BD” for m = 100 : 50 : 1000 and n = 1024
with K = 15 and K = 30 for x from cases 1-4. Figs.

3-6 show that “New BD” are much larger than “Existing

BD” for all the four cases which indicates that the lower

bounds on P(S) given by Corollaries 1–2 and Observation 1

are much sharper than that given by [14, Theorem 6]. They

also show that OMP has significantly better recovery per-

formance in recovering α-strongly-decaying and Gaussian

sparse signals than recovering flat sparse signals, and the

recovery performance of the OMP algorithm for recovering

α-strongly-decaying sparse signals becomes better as α gets

larger.

4. CONCLUSIONS

In this paper, we developed lower bounds on the probability

of exact recovery using K iterations of OMP for x satisfying

a condition that characterizes the variations in the magnitudes

of the nonzero entries of x.
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