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ABSTRACT
Graph sampling with noise is a fundamental problem in graph signal
processing (GSP). Previous works assume an unbiased least square
(LS) signal reconstruction scheme and select samples greedily via
expensive extreme eigenvector computation. A popular biased
scheme using graph Laplacian regularization (GLR) solves a system
of linear equations for its reconstruction. Assuming this GLR-based
scheme, we propose a reconstruction-cognizant sampling strategy
to maximize the numerical stability of the linear system—i.e., mini-
mize the condition number of the coefficient matrix. Specifically, we
maximize the eigenvalue lower bounds of the matrix, represented by
left-ends of Gershgorin discs of the coefficient matrix. To accom-
plish this efficiently, we propose an iterative algorithm to traverse
the graph nodes via Breadth First Search (BFS) and align the left-
ends of all corresponding Gershgorin discs at lower-bound threshold
T using two basic operations: disc shifting and scaling. We then
perform binary search to maximize T given a sample budget K.
Experiments on real graph data show that the proposed algorithm
can effectively promote large eigenvalue lower bounds, and the
reconstruction MSE is the same or smaller than existing sampling
methods for different budget K at much lower complexity.

Index Terms— Graph sampling, graph Laplacian regulariza-
tion, Gershgorin circle theorem

1. INTRODUCTION

Graph sampling is a basic problem in Graph Signal Processing
(GSP) [1–3]. While the noiseless sampling case is extensively stud-
ied [4–10], the “sampling with noise” case remains challenging.
Previous works typically assume an unbiased least square (LS)
signal reconstruction scheme from sparse samples [7, 9, 11], which
leads to a minimum mean square error (MMSE) formulation and the
known A-optimality criterion for independent additive noise [12].
The criterion is minimized greedily per sample using schemes that
compute extreme eigenvectors [7, 9], which is not scalable for large
graphs. ( [11] does not compute eigenvectors, but computes many
matrix-vector multiplications for good approximation.)

Instead of unbiased LS reconstruction, recent biased graph
signal restoration schemes employ signal priors, including graph
Laplacian regularization (GLR) [13, 14] and graph total varia-
tion (GTV) [15–17]. In particular, biased schemes using GLR
solve a system of linear equations for signal reconstruction via fast
numerical methods like conjugate gradient (CG) [18]. In this pa-
per, assuming a GLR signal reconstruction scheme, we propose
a reconstruction-cognizant sampling strategy to maximize the nu-
merical stability of the linear system—i.e., minimize the condition
number (ratio of the largest to smallest eigenvalues) of the coefficient
matrix. By coupling the GLR reconstruction method to sampling

during optimization, we expect a better-performing sample set that
yields higher quality when the sampling and reconstruction schemes
are deployed in tandem.

Computing the extreme eigenvalues of a large matrix directly
is expensive, using prevalent methods such as implicitly restarted
Arnoldi method [19] or the Krylov-Schur algorithm [20]. Instead,
we maximize the minimum of all eigenvalue lower bounds of the
matrix, where each bound is represented by the left-end of a Ger-
shgorin disc of the coefficient matrix [21]. We introduce two basic
operations to manipulate a Gershgorin disc: disc shifting via sam-
pling, and disc scaling via similarity transform. We design a Breadth
First Iterative Sampling (BFIS) algorithm to traverse all nodes via
Breath First Search (BFS), and align the left-ends of all discs to a
lower bound threshold T . We then perform binary search (BS) to
maximize T given a sampling budget K. Note that unlike existing
greedy sampling schemes [6–9], our scheme never explicitly com-
putes extreme eigenvectors, and thus can scale gracefully to very
large graphs. Experiments on both illustrative examples and real
graph data demonstrate that our proposed BS-BFIS algorithm pro-
motes large eigenvalue lower bounds, and the reconstruction MSE
is the same or smaller than existing sampling methods [6, 8, 11] for
different budget K.

2. PRELIMINARIES

We define a graph G as a triplet G(V, E ,W), where V and E repre-
sent sets of N nodes and M edges in the graph, respectively. As-
sociated with each edge (i, j) ∈ E is a weight wi,j , which reflects
the correlation or similarity between two nodes i and j. We assume
a connected undirected graph; i.e., wi,j = wj,i, ∀i, j ∈ V . W is
an adjacency matrix with wi,j as the (i, j)-th entry of the matrix.
Typically, wi,j > 0 for ∀(i, j) ∈ E , and wi,j = 0 otherwise.

Given W, the combinatorial graph Laplacian matrix Ł is com-
puted as [2]:

Ł , D−W (1)
where D = diag(W1) is a diagonal degree matrix. 1 is a vector of
all 1’s and diag(·) is an operator that returns a diagonal matrix with
the elements of an input vector on the main diagonal.

Graph Laplacian regularizer (GLR) [13] is a smoothness prior
for signals on graphs, which has demonstrated its effectiveness in
numerous applications, such as semi-supervised learning [22, 23],
image processing [3, 13, 14] and computer graphics [24]. Given ob-
servation y on a graph G, one can formulate an optimization for the
target signal x̂ ∈ RN using GLR as follows:

x̂ = argmin
x
‖Hx− y‖22 + µ x>Łx (2)

where H represents a signal degradation process. µ is a tradeoff
parameter to balance GLR against the l2-norm data fidelity term.
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In this work, we focus on signal reconstruction from sparse sam-
ples. The observation model for signal samples can be modeled lin-
early as follows [4–11]:

y = Hx + n (3)

where H ∈ RK×N is a sampling matrix [11]. x ∈ RN is an original
graph signal, and y ∈ RK , 0 < K < N , is a sampled signal of
dimension K corrupted by additive noise n.

Since objective (2) is quadratic, the optimal solution can be ob-
tained by solving a system of linear equations:

(H>H + µŁ)x = H>y. (4)

Because both H>H and Ł are singular matrices, (4) can potentially
be poorly conditioned. From this observation, we next study the
impact of sampling on the numerical stability of (4) and propose a
reconstruction-cognizant sampling strategy.

3. RECONSTRUCTION-COGNIZANT SAMPLING

3.1. Graph Sampling and Reconstruction Stability

Reconstructing a sampled signal with GLR leads to solving a linear
equation (4). Denote by a diagonal matrix A = H>H ∈ RN×N
satisfying

ai,i =

{
1, i ∈ Φ,

0, otherwise.
(5)

where Φ is a set of indices of sampled nodes. Denote by B = A +
µŁ. From Gershgorin Circle Theorem (GCT)1, each eigenvalue λ of
B lies within one Gershgorin disc Ψi(bi,i, Ri) with disc center bi,i
and radius Ri, i.e.,

bi,i −Ri ≤ λ ≤ bi,i +Ri, (6)

where Ri =
∑
j 6=i |bi,j | = µ

∑
j wi,j = µdi, and di is the degree

of node i. The second equation is true since there are no self-loops
in G. Center of disc i is bi,i = µdi + ai,i.

The upper bound of all eigenvalues can be computed as:

max
i
{bi,i +Ri} = max

i
{ai,i + 2µdi} ≤ 1 + 2µmax

i
di. (7)

For a sparse graph with maximum degree dmax for each node, the
eigenvalue upper bound is 1 + 2µdmax, which is not large.

The lower bound of all eigenvalues is computed as:

min
i
{bi,i −Ri} = min

i
ai,i = 0. (8)

In words, for each unsampled node, its Gershgorin disc in B has left-
end at 0—an eigenvalue lower bound at 0. Thus the minimum eigen-
value λmin of B can also be close to the 0 lower bound, severely
magnifying the condition number λmax/λmin of B, and resulting in
a poorly-conditioned signal reconstruction using (4). The extreme
case is when no nodes are sampled, i.e., B = µŁ, and λmin = 0.
Ideally then, we would shift all Gershgorin discs right to maximize
the minimum eigenvalue lower bounds.

Via GCT, we see that we can estimate the degree of numerical
instability of GLR signal reconstruction without computing actual
eigenvalues, by examining left-ends of Gershgorin discs. We next in-
troduce two operations to manipulate Gershgorin discs, which leads
to a sampling algorithm to maximize the lower-bounds of λmin.

1https://en.wikipedia.org/wiki/Gershgorin circle theorem

3.2. Graph Sampling to Maximize Lower-bounds of λmin

We first state the following linear algebra fact without proof, which
we use to enable scaling of Gershgorin discs.

Fact 1: Similarity transform S of a square matrix B to C, defined as

C = SBS−1, (9)

preserves the eigenvalues of B, assuming S is a nonsingular matrix.

Using Fact 1, we will employ a diagonal S to scale Gershgorin
discs of B, so that left-ends of Gershgorin discs of resulting trans-
formed C are moved right, maximizing lower bounds of λmin. By
scaling each disc Ψi to move its left-end bi,i −Ri to the right with-
out affecting eigenvalues of B, we are tightening one lower bound
for λmin of B per scaling operation, which helps us make more in-
formed sampling decisions for other nodes j 6= i.

3.2.1. Breadth First Iterative Sampling

We introduce two basic operations to manipulate Gershgorin discs.
The first operation is disc shifting via sampling. As discussed, the
left-end bi,i −Ri = ai,i of the i-th Gershgorin disc Ψi in matrix B
shifts from 0 to 1 when node i is sampled.

The second operation is disc scaling via similarity transform.
We specify the i-th diagonal term si of S in (9)—and its correspond-
ing element s−1

i in S−1—to scale the radius Ri of Ψi and the radii
of its neighbors’ discs Ψj , where j ∈ Ni = {j | wi,j > 0}. For
example, if we expand Ri using scalar si > 1, then we also shrink
its neighbors’ discs with s−1

i < 1. Since si is always offset by s−1
i

on the main diagonal, the center bi,i of disc Ψi is unchanged.
Given graph G and an eigenvalue lower-bound threshold T ,

where T < 1, we apply disc shifting and scaling operations iter-
atively to align discs’ left-ends at T . The algorithm is as follows.
First, we sample a chosen node i (thus moving the corresponding
disc Ψi’s center bi,i from µdi to 1+µdi, and Ψi’s left-end ai,i from
0 to 1). Then we apply scalar si to expand Ψi’s radius Ri and align
its left-end at exactly T . Scalar si must hence satisfy

ai,i + µ

di − si · ∑
j∈Ni

wi,j
sj

 = T, (10)

where initially sj = 1 for j 6= i. Solving for si in (10), we get

si =
ai,i + µdi − T
µ
∑
j∈Ni

wi,j

sj

. (11)

Using scalar si means we also shrink node i’s neighbors’ discs
Ψj’s radii due to s−1

i . Specifically, left-end bj,j −Rj of a neighbor
j’s disc Ψj (aj,j = 0) is now:

bj,j−Rj = aj,j+µ

dj − sj · ∑
k∈Nj\{i}

wj,k
sk
− sj ·

wj,i
si

 (12)

If a neighboring disc Ψj’s left-end is larger than T , then we need
not sample node j and instead expand its radius to align its left-end
at T using (11). This shrinks the discs of node j’s neighbors, and so
on. sj decreases with hops away from the sampled node.

If the left-end of Ψj is smaller than T , then we sample this node
(aj,j = 1) and select scalar sj using (11) again, and the process
repeats. Since we always expand a current disc (si > 1) leading to
shrinking of neighboring discs (si−1 < 1) in each step, the left-end



Algorithm 1 Breadth First Iterative Sampling

Input: Graph G, lower-bound T , the start node i and µ.
1: Initialize D = diag(W1) and S = diag(1).
2: Initialize A = zeros(N,N), N = |V|.
3: Initialize an empty setQ for enqueued nodes.
4: Initialize an empty queue.
5: Enqueue(queue, i) andQ ← Q∪ {i}.
6: while queue is not empty do
7: k ←Dequeue(queue).
8: Update sk using (11).
9: if sk < 1 do

10: Sampling node k by setting ak,k = 1.
11: Update sk using (11).
12: endif
13: for t in k’s neighboursN (k) do
14: if t /∈ Q do
15: Enqueue(queue, t) andQ ← Q∪ {t}.
16: endif
17: endfor
18: endwhile
Output: Sampling matrix A.

Fig. 1: An illustrative example of a 4-node line graph.

of each scaled node remains larger than or equal to lower-bound T .
We traverse all the nodes using Breadth First Search (BFS). Thus,
we name our proposed algorithm Breadth First Iterative Sampling
(BFIS). The BFIS is sketched in Algorithm 1.

3.2.2. Illustrative Example

We use a simple example to illustrate how BFIS works. We assume
a four-node graph as shown in Fig. 1. We start by sampling node
3. Assuming µ = 1, the graph’s coefficient matrix B with (3, 3)-th
entry updated is shown in Fig. 2a. Correspondingly, left-end of node
3’s Gershgorin disc—red dots and blue arrows represent disc centers
and radii respectively—shifts from 0 to 1, as shown in Fig. 2d.

We next perform disc scaling on sampled node 3. As shown in
Fig. 2b, scalar s3 is applied to the third row of B, and thus the radius
of disc Ψ3 is expanded by s3 where s3 > 1. Simultaneously, scalar
s−1
3 is applied to the third column, and thus the radii of discs Ψ2

and Ψ4 are shrunk due to the scaling of w2,3 and w4,3 by s−1
3 . Note

that the (3, 3)-th entry of B (and Ψ3’s disc center) is unchanged,
since scalar s3 is offset by s−1

3 . We see that by expanding the disc
of sampled node 3, the left-ends of discs of its neighboring nodes
(nodes 2 and 4) shift beyond threshold T , as shown in Fig. 2e.

We next apply scalar s2 to disc Ψ2 to expand its radius by s2,
where s3 > s2 > 1, and the radii of discs Ψ1 and Ψ3 are shrunk due
to the scaling of w1,2 and w3,2 by s−1

2 , as shown in Fig. 2c. s2 must
be smaller than s3 for the left-end of Ψ2 not to move past 0. The
discs are shown in Fig. 2f. Subsequently, similar disc operations can
be performed on Ψ1 and Ψ4. Finally, the left-ends of all discs move
beyond threshold T .

3.2.3. Binary Search with BFIS

Given a sample budgetK, we perform binary search to maximize the
lower-bound threshold T . We call the algorithm Binary Search with

(a) (b) (c)

(d) (e) (f)

Fig. 2: An illustration of BFIS. (a) sampling node 3. (b) scaling node
3. (c) scaling nodes 2 and 3. (d) Discs after sampling node 3. (e)
Discs after scaling node 3. (f) Discs after scaling nodes 2 and 3.

Algorithm 2 Binary Search with BFIS

Input: Graph G, sample size K, numerical precision ε, the start
node i and weight parameter µ.

1: Initialize left = 0, right = 1.
2: while right− left > ε do
3: T ← (left+ right)/2.
4: A← BFIS(G, T, i, µ).
5: m← the number of nodes sampled in A.
6: if m > K do
7: right← T
8: else
9: left← T

10: endif
11: endwhile
12: T̂ ← left.
13: A← BFIS(G, T̂ , i).
Output: Sampling matrix A, maximum lower-bound T̂ .

BFIS (BS-BFIS), as outlined in Algorithm 2. At each iteration, if the
number of sampled nodes in A output from BFIS is larger than K,
then threshold T is set too large, and we update right to reduce T .
On the other hand, if the number of sampled nodes is smaller than or
equal to K, then threshold T may be too small, and we update left
to increase T . When right− left ≤ ε, BS-BFIS converges and we
find the maximum lower bound T̂ with numerical error lower than ε.
We run BFIS again with T̂ to compute the K sampled nodes.

Because the proposed BFIS executes BFS once on a graph G, the
time complexity of BFIS isO(|V|+|E|). In order to achieve numeri-
cal precision ε in BS-BFIS, we need to employ BFISO(log 1

ε
) times.

Thus, the time complexity for BS-BFIS is O
(
(|V|+ |E|) log 1

ε

)
.

4. EXPERIMENTS

4.1. Experimental Setting

We apply the proposed sampling algorithm on both an illustrative
line graph and a real U.S. Climate Normals database [25]. We com-
pare with several existing graph sampling methods: E-optimal [6],
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Fig. 3: Sampling on an unweighted line graph, |V| = 21. (a) Sam-
pling 5 nodes, lower-bound T = 0.048. (b) Sampling 7 nodes,
lower-bound T = 0.107.
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Fig. 4: (a) Comparisons among lower-bound T and the correspond-
ing λTmin via BS-BFIS, and mean λRmin via 100 times random sam-
pling. (b) Reconstruction MSE comparisons among E-optimal [6],
Spectral proxies [8], MIA [11] and BS-BFIS.

spectral proxies [8], and MIA [11]. All algorithms are implemented
and run on Matlab R2015a platform.

To run BS-BFIS algorithm, there are three parameters we need
to set besides graph G and sample sizeK, i.e., numerical precision ε,
the start node i and tradeoff parameter µ. In experiments, we set the
numerical precision ε = 10−4. Because BS-BFIS employs BFS to
visit all the graph nodes, the start node i determines the visiting order
and affects the performance of BS-BFIS, especially when K � N .
To demonstrate the best performance of BS-BFIS, we choose the
start node i that leads to the largest T̂ via brute-force search. For the
sake of speed, the start node i can be chosen randomly in practice. In
experiments, we set the tradeoff parameter µ in (10) and (4) to 0.01
for signal reconstruction.

For experiments on real data, we build a graph on real U.S. Cli-
mate Normals database [25]. We select 100 temperature stations
close to cities with 100 largest populations as graph nodes. The
graph edges are connected with Delaunay Triangulation2, and the
graph weights are computed using wij = exp(−‖li − lj‖22/σ2

l ) ·
exp(−‖xi − xj‖22/σ2

x) like bilateral filter [26], where li and xi are
the geometric location and the temperature of station i, respectively.
σl = 5 and σx = 3. In our experiments, we sample the temper-
atures of K stations with simulated additive Gaussian noise of unit
variance. Then, we reconstruct temperatures of all stations by solv-
ing linear equation (4).

4.2. Experimental Results

In Fig. 3, we conduct an illustrative experiment to perform sampling
on an unweighted line graph of 21 nodes. We sample 5 and 7 nodes,
respectively. Fig. 3a and Fig. 3b report the scale factor si for each
disc and the distribution of sampled nodes. Using BS-BFIS, we
observe periodic uniform sampling for different sampling budgets,
which agrees with our intuition.

We also apply BS-BFIS on a graph built on real U.S. Climate

2https://en.wikipedia.org/wiki/Delaunay triangulation
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Fig. 5: Sampling visualization (K = 25). Solid circles are sampled
nodes. Color depicts the temperature. The running time of E-optimal
[6], Spectral proxy [8], MIA [11] and BS-BFIS is 0.103s, 1.440s,
0.108s and 0.082s, respectively.

Normals database [25]. Our objective is to maximize the lower-
bound of minimum eigenvalue λmin. We apply BS-BFIS on the
constructed graph G to compute the lower-bound threshold T̂ and
sampling matrix A with increasing sample budget K. With out-
put A, we compute λTmin via eigen-decomposition. For compari-
son, we employ random sampling 100 times and compute the mean
minimum eigenvalue λRmin. As shown in Fig. 4a, BS-BFIS can pro-
mote large lower-bound threshold T with increasing sample budget
K, and the minimum eigenvalue λTmin increases correspondingly.
Both the lower-bound T and the corresponding λTmin increases much
faster than λRmin using random sampling.

We also compare the reconstruction MSE of BS-BFIS with ex-
isting sampling methods: E-optimal [6], spectral proxies [8], and
MIA [11], as shown in Fig. 4b. Each method outputs sampling ma-
trix A under sampling sizeK. With A, we can have H and solve (4)
to reconstruct the temperatures of all stations. We observe that the
performance of BS-BFIS is comparable to or better than the compet-
ing methods. In Fig. 5, we visualize the sampled nodes of the four
methods with K = 25 and show the running time, respectively. We
observe that the sampled nodes of BS-BFIS tend to distribute uni-
formly on the graph, due to BFS and disc scaling operation in BFIS.
However, sampled nodes of other methods, such as MIA [11], tend
to accumulate in several areas. This explains the good performance
of BS-BFIS. BS-BFIS is the fastest among the four algorithms.

5. CONCLUSION

To address the “graph sampling with noise” problem, in this paper
we propose a reconstruction-cognizant graph sampling scheme that
assumes a biased reconstruction based on graph Laplacian regular-
ization (GLR) and maximizes the stability of the solution’s linear
system. In particular, our proposed BS-BFIS promotes large lower-
bounds of λmin via Gershgorin disc alignment. Besides stability of
signal reconstruction, the proposed algorithm leads to same or better
reconstruction MSE against existing methods at lower complexity.
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crete signal processing on graphs: Sampling theory,” IEEE
Transactions on Signal Processing, vol. 63, no. 24, pp. 6510–
6523, 2015.

[7] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on
graphs: Uncertainty principle and sampling,” IEEE Transac-
tions on Signal Processing, vol. 64, no. 18, pp. 4845–4860,
Sep. 2016.

[8] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set se-
lection for bandlimited graph signals using graph spectral prox-
ies,” IEEE Transactions on Signal Processing, vol. 64, no. 14,
pp. 3775–3789, 2016.

[9] L.F.O Chamon and A. Ribeiro, “Greedy sampling of graph
signals,” IEEE Transactions on Signal Processing, vol. 66, no.
1, pp. 34–47, 2018.

[10] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst,
“Random sampling of bandlimited signals on graphs,” Ap-
plied and Computational Harmonic Analysis, vol. 44, no. 2,
pp. 446–475, 2018.

[11] F. Wang, Y. Wang, and G. Cheung, “A-optimal sampling and
robust reconstruction for graph signals via truncated neumann
series,” IEEE Signal Processing Letters, vol. 25, no. 5, pp.
680–684, 2018.

[12] S. Boyd and L. Vandenberghe, Convex optimization, Cam-
bridge University Press, 2004.

[13] J. Pang and G. Cheung, “Graph Laplacian regularization for
image denoising: Analysis in the continuous domain,” IEEE
Transactions on Image Processing, vol. 26, no. 4, pp. 1770–
1785, April 2017.

[14] X. Liu, G. Cheung, X. Wu, and D. Zhao, “Random walk graph
Laplacian based smoothness prior for soft decoding of JPEG
images,” IEEE Transactions on Image Processing, vol. 26, no.
2, pp. 509–524, February 2017.

[15] C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, and H. Talbot,
“Dual constrained TV-based regularization on graphs,” SIAM
Journal on Imaging Sciences, vol. 6, no. 3, pp. 1246–1273,
2013.

[16] P. Berger, G. Hannak, and G. Matz, “Graph signal recovery via
primal-dual algorithms for total variation minimization,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 6,
pp. 842–855, Sept 2017.

[17] Y. Bai, G. Cheung, X. Liu, and W. Gao, “Graph-based blind
image deblurring from a single photograph,” IEEE Trans-
actions on Image Processing, vol. 28, no. 3, pp. 1404–1418,
March 2019.

[18] Magnus Rudolph Hestenes and Eduard Stiefel, Methods of
conjugate gradients for solving linear systems, vol. 49, Journal
of Research of the National Bureau of Standards, 1952.

[19] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods, Society for Industrial and
Applied Mathematics, 1998.

[20] G. W. Stewart, “A Krylov–Schur algorithm for large eigen-
problems,” SIAM Journal on Matrix Analysis and Applica-
tions, vol. 23, no. 3, pp. 601–614, 2002.

[21] G. Williams, Linear algebra with applications, Jones &
Bartlett Learning, 2017.

[22] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and
semi-supervised learning on large graphs,” in Learning Theory,
John Shawe-Taylor and Yoram Singer, Eds. 2004, pp. 624–638,
Springer Berlin Heidelberg.

[23] G. Cheung, Su W.-T., Mao Y., and Lin C.-W., “Robust semisu-
pervised graph classifier learning with negative edge weights,”
IEEE Transactions on Signal and Information Processing over
Networks, vol. 4, no. 4, pp. 712–726, 2018.

[24] O. Sorkine, “Laplacian mesh processing,” in Eurographics
2005 - State of the Art Reports, Yiorgos Chrysanthou and Mar-
cus Magnor, Eds. 2005, The Eurographics Association.

[25] U.S. Climate Normals Database from National Centers for En-
vironmental Information, “https://www.ncdc.noaa.gov/data-
access/land-based-station-data/land-based-datasets/climate-
normals/1981-2010-normals-data,” .

[26] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Proceedings of the IEEE International Con-
ference on Computer Vision, Bombay, India, 1998.


	1  Introduction
	2  Preliminaries
	3  Reconstruction-Cognizant Sampling
	3.1  Graph Sampling and Reconstruction Stability
	3.2  Graph Sampling to Maximize Lower-bounds of min
	3.2.1  Breadth First Iterative Sampling
	3.2.2  Illustrative Example
	3.2.3  Binary Search with BFIS


	4  Experiments
	4.1  Experimental Setting
	4.2  Experimental Results

	5  Conclusion
	6  References

