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ABSTRACT

We present an algorithm for minimizing the sum of a strongly convex
time-varying function with a time-invariant, convex, and nonsmooth
function. The proposed algorithm employs the prediction-correction
scheme alongside the forward-backward envelope, and we are able
to prove the convergence of the solutions to a neighborhood of the
optimizer that depends on the sampling time. Numerical simulations
for a time-varying regression problem with elastic net regularization
highlight the effectiveness of the algorithm.

Index Terms— time-varying optimization, prediction-correction
methods, forward-backward envelope, convex optimization

1. INTRODUCTION

In this work, we are interested in the solution of time-varying opti-
mization problems in the form

x*(t) = argmin{f(z;t) + g(z)} (1)

xeR™

where f : R™ x Ry — R is smooth and strongly convex, and
g : R"™ — R is proper, closed and convex, but possibly non-
differentiable. Since the solution &*(t) — the trajectory — changes
over time, the objective is to track it up to a bounded error ball.

In particular, we are interested in solving problem (I) in a
discrete-time framework, in order to directly implement the solu-
tion on digital hardware. Hence we discretize the problem with a
sampling period Ty := tx+1 — tx, which yields the sequence of
time-invariant problems

x*(thy1) = argmin{f(; ts41) + g(x)}, keN. ()

xeR"

The smaller the sampling time is, the higher the accuracy of the
trajectory composed of the solutions to (@) will be. However, we
need to account for the time required to solve the problems which
might exceed some values of 75, and therefore there is a trade-off
between precision and practical implementation constraints.

There are many applications in which problems in the form (T)
arise. For instance, in signal processing the reconstruction of time-
varying signals on the basis of (noisy) observations gathered online
can be cast as a sequence of optimization problems [1H6]]. In control,
the model predictive control (MPC) requires that we solve an opti-
mization problem which varies over time [[7H9] in order to design a
control action. In robotics, path tracking and leader following prob-
lems can be cast in the framework of (]I[), see for example [[10H12].

In this paper, we are interested in the solution of () using
a prediction-correction scheme. Time-varying optimization algo-
rithms based on the prediction-correction scheme have been pro-
posed for both the discrete-time framework that we employ [[13H15]]
and in a continuous-time setup [[16H18].

These works, however, are designed to solve smooth optimiza-
tion problems only; here, our aim is to tackle non-smooth optimiza-
tion problems by employing the recent results on envelope functions,
and in particular the forward-backward envelope (FBE) first intro-
duced in [19], in conjunction with the prediction-correction scheme.

The main contributions of this paper are: (i) a prediction-
correction algorithm to solve the time-varying optimization prob-
lem (I) by using the envelope functions in both the prediction and
correction step; (ii) a detailed convergence and convergence rate
analysis of the above that show global convergence to an error
bound of O(T%) and local convergence to an error bound of O(T2),
under additional assumptions.

Remark 1 The forward-backward envelope is a powerful tool that
has recently gained momentum, especially in the context of solving
certain classes on non-convex optimization problems. In this sense,
this paper can be seen as a first step towards a more general theory
of time-varying optimization algorithms. We remark also that the
FBE has been advocated as a way to derive Newton-like methods
for £y regularized problems, showing improved results in compar-
ison to more traditional approaches, such as FISTA [0], at lower
computational cost. In Sec. |Zl we will report some results about the
FBE, and we refer the reader to [20-422|] for an in-depth treatment
of the subject.

Remark 2 For the relationship of the FBE with the forward-
backward splitting (also known as proximal gradient method)
[231124)], see e.g. [I20].

Organization The paper is organized as follows. Sec.2]introduces
the prediction-correction scheme, the forward-backward envelope,
and then the proposed algorithm. Sec. E| presents the convergence
results for the algorithm and a sketch of the proof. Sec.[d]describes
the results of the numerical simulations and Sec. [5]some concluding
remarks.

Basic definitions We say that a function ¢ : R" — R is m-
strongly convex for a constant m € R iff () — 2| | is convex.
The function ¢ is said to be L-smooth if its gradient is L-Lipschitz
continuous, or equivalently ¢ () — £ || is concave. We denote the
class of m-strongly convex and L-smooth functions with S, . (R™).

A function is said to be closed if for any a € R the set {x €
dom(f) | ¢(x) < a} is closed. A function is said to be proper if
it does not attain —o0. We denote the class of closed, convex and
proper functions with o (R™).

Given p € I'H(R™) we define its subdifferential as the set-valued
operator dp : R™ =3 R™ such that

z— {zeR"|[VyeR": (y—= 2)+ o) <p(y)}.



2. PREDICTION-CORRECTION WITH ENVELOPES

In this section, we introduce the prediction-correction scheme for
time-varying optimization alongside with the forward-backward en-
velope function. In the remainder of this paper we make use of the
following assumptions.

Assumption 1 The function f : R"™ x Ry — R"™ belongs to
S, (R™) uniformly in time. The function g : R™ — R belongs to
I'o(R™) and is in general nonsmooth.

Assumption 2 The function f has bounded time derivative of its
gradient derivative as: ||Vie f(2;1)|] < Co.

Assumption 3 The function f is at least three time differentiable
and has bounded derivatives w.rt. x € R" and t € R as:

IVawef(z:)| < C1, ([ Vawf(@5t)] < Co,
[Vire f(z; )] < Cs.

In the analysis of time-varying problems, Assumption|[T]is com-
mon, see e.g. [1325[26]. This assumption ensures by strong convex-
ity that the solution to the problem is unique at each time, and that
the gradient of f is Lipschitz continuous. Moreover, Assumption [2]
guarantees that the gradient of f has a variability over time that is
bounded, thus enabling the computation of reliable predictions. As-
sumptionimposes instead boundedness of the tensor Vzas f (2; 1),
which is typical when analyzing the convergence of second-order al-
gorithms. Moreover, it bounds the variability of the Hessian of f
over time, which makes it possible to carry out even more precise
predictions of the optimal trajectory.

2.1. Prediction-correction

Prediction-correction algorithms have appeared as a computational-
light way to solve time-varying optimization problems. The main
idea is to compute approximate optimizers for the sequence of time-
invariant problems (2), such that eventually one converges on the
time-varying optimizer trajectory & (¢). More formally, let xj, be
the approximate optimizer for (2) at k. Then we want to design meth-
ods to determine the sequence {xj }ren such that [z, — x* (L)
goes eventually to a bounded error term.

Prediction-correction algorithms determine each xy41 by first
predicting (at ¢5) how the optimizer will change in time, and then by
correcting (at t;+1) based on the new acquired sampled cost func-
tion. Both prediction and correction are here based on a few de-
scent iterations on the envelope functions. The more iterations one
performs, the smaller the asymptotical tracking error, however the
greater the computational time is.

The prediction step has the aim of computing an approximation
of the optimal solution at time tx41, €™ (tp+1) =: @}, by using
only the information available at time ¢, that is f(x;tx) and the
previous solution &;, computed by the algorithm. Once the new cost
function f(;tk+1) is observed at time t541, we perform the cor-
rection step, that is we solve problem (Z) approximately, using as
initial condition the prediction computed at time tj.

In order to use the forward-backward envelope framework, it is
useful to reformulate the minimization problem (2) as the following
generalized equation

Vaf(®r+1;th+1) + 0g(xr+1) 3 0. 3)

During the prediction step at time ¢, we cannot solve to
predict how the optimizer will change at ¢ 1; instead, we make use

of the available information at time ¢, to approximate Vg f (@; tx+1)
with the following Taylor expansion

Vhi(x) = Vo f(r; ts)+

(C))
+ Vmgpf(alk, tk)(ac — $k) + Tsvtwf(tck; tk).
Therefore during the prediction step we want to solve the approxi-
mated generalized equation

Vhi(®gi1k) + 09(®x411x) 0 ®)

derived from (@) substituting hi(x) to the (as yet unknown)
f(®;try1); notice that @y 1), will denote the computed predic-
tion.

During the correction step at time ¢x1, we can now solve (ap-
proximately) (3)), which is what we will do.

Remark 3 From Assumption |l| follows that hy, € S, .(R"™), and
by definition we can write it explicitly as

1
hy(x) = §wTszf(mk;tk)ac+

+<me(mk; tk) — wa(:ck;tk)mk + Tsvtwf(:llk; tk)>TCI).

2.2. Forward-backward envelope

Notice that both the prediction and correction problems, (3) and (3),
are of the form

Ve(z*) + og(x*) 20 )

with ¢ that is m-strongly convex and L-smooth. Therefore we can
apply the recently proposed forward-backward envelope (FBE) to
solve them.

The FBE for a problem (@) is defined as

2
. —x
M(w) = min {w(m)+<vw(w), y—m>+g(y)+”y%|} ©)
where vy € (0,1/L).
Under Assumption|[T]it holds that

argmin(p + g)(x) = arg min M(x),

and therefore minimizing the FBE is equivalent to solving problem
(6). Moreover, the envelope is continuously differentiable on R"
and twice continuously differentiable at the unique solution 2*, with
positive definite Hessian.

In general, the FBE is however nonconvex, and hence in order
to minimize it a quasi-Newton scheme with line search has been pro-
posed in [20], that estimates the Hessian of the FBE using the BEGS
method. In our framework, it is possible to prove that the quasi-
Newton method applied to the FBE has global linear convergence,

that is
1 _ %

C=\/max{;,1—z&min{’y,41l/}}<l, ®)

a result that will be instrumental in proving convergence of our
prediction-correction algorithm.

e
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Remark 4 The recent work [|22|] proved that if  is convex quadratic,
then the FBE is strongly convex and smooth, and notice that this is
exactly the case of hy in the prediction step. Therefore we can
minimize the FBE at the prediction step using a Newton method with
BFGS scheme, without the need for the line search that requires
a larger number of iterations. The numerical results presented in
Sec. Hexploit this.

Remark 5 An alternative minimization strategy for the FBE is pro-
posed in [21)].

2.3. Proposed algorithm

The previous section introduced the forward-backward envelope,
that is suited to solving the prediction and correction problems.
However, the convergence of the quasi-Newton method is guaran-
teed only asymptotically. For practical reasons, namely the finite
length of each sampling period, we choose to perform only a fixed
number of iterations of the solution algorithm: P for the prediction
step, C for the correction.

We are now ready to describe the proposed prediction-correction
algorithm with the FBE, which is reported in Algorithm [T} at every
time tx, we perform P steps of the quasi-Newton method for the
FBE,

M(z) =min {hk(m) + (Vhi(x),y — ) + g(y) + Hy;H}

constructed for the prediction problem (@) [cf. line[3]}; this yields an
approximate predictor Zy 4 1|x.
At time t541, we observe the new cost function f(+;tx4+1) [cf.

line[§], and we perform C' steps of the quasi-Newton method for the
FBE,

M(z) = myin {f(fﬁ tev1) +{Vaf(@;tpr1),y — )+

ly — |
+g(y) + > ,

constructed for the correction problem [cf. line[7]]; this yields the
approximate optimizer 1.

Algorithm 1 Prediction-correction algorithm with the FBE.

Input: xo, parameter +y, horizons P and C'.
1: fork =0,1,...do
2: /] time tg,
3: perform P steps of the quasi-Newton method for the FBE
with initial condition x,

4: set &j41)% equal to the last iterate produced by the quasi-
Newton

5: // time g 41

6: observe the cost function f(+;tx+1)

7: perform C' steps of the quasi-Newton method for the FBE
with initial condition the prediction &1k

8: set xr11 equal to the last iterate produced by the quasi-
Newton

9: end for

Remark 6 In general we could use two different v parameters for
the prediction and correction steps, but for simplicity we use a single
one.

3. CONVERGENCE ANALYSIS

In this section, we prove that the sequence {@x }ren generated by
Algorithm[T] converges to a neighborhood of the optimal trajectory,
which is characterized in terms of the sampling period 75. We divide
the result in two theorems. The first is a global convergence result
with standard assumptions; the second is a local enhanced conver-
gence result with additional assumptions. Such results are typical in
prediction-correction time-varying optimization and they extend the
ones in [14] for non-smooth cost functions.

Theorem 1 Ler Assumptions [If2] hold, and choose the parameters
P and C in such a way that

c|.p P 2L1—~m
¢ [C + (¢ +1)El—7L]<1'

Then the trajectory {x}ren generated by Algorithmconverges to
a neighborhood of the optimal trajectory {x} }ken as

lim sup Hmk — wZH = O(CCTS).
k—o0

Theorem 2 Let Assumptions and B hold, and choose the pa-
rameters P and C, and T € (0, 1) in such a way that (¥ ¢ < 7.
Then there exist an upper bound for the sampling time Ts and a
convergence region R such that if Ty < Ts and ||z — zi|| < R,
then

limsup |z, — zf|| = OC“T2) + O(¢"* D).
k—
In particular, the bound for the sampling time and the convergence
region are characterized by

T —¢P*e 1
T CO(CP + 1) K(kCoCh + C2)

~i

_ 2 _
R = Z-(kCoCi + Cs) (TS - C%T) .

with k = (1 —ym)/[m(1 —~vL)]. o

The two theorems guarantee that, under suitable regularity con-
ditions of the problem in hand, the trajectory generated by Algo-
rithm [1| converges asymptotically to a neighborhood of the optimal
trajectory. Moreover, the size of this neighborhood depends on T
for Theorem 1| and on 7.2 for Theorem [2] in accordance with the
fact that the smaller the sampling time is, the better the sequence of
problems (@) approximates the original problem (T).

The neighborhoods depend also on the convergence rate (,
which in turn depends on the convexity and smoothness moduli
of the function f; thus the structure of the problem influences the
accuracy of the proposed algorithm.

The proof of both results can be found in the Appendix, along
with the exact expression for the asymptotic error. Here we mention
only some facts. The idea behind the proof is to compute an upper
bound to the error ||zx — ||, and to do so we need to account
for two sources of error: the approximation error introduced during
the prediction step, and the early termination error due to the finite
number of minimization steps in both prediction and correction. The
approximation error depends (among other things) on how fast the
cost function is changing and a bound on such error can be derived



based on implicit function mapping theorems. In particular, we make
use of Dini’s theorem, see e.g., [27, Th. 1B.1], and the algebraic
properties of the envelope function. The early termination errors
are instead bounded based solely on the properties of the envelope
function.

Once the bound for the errors is derived, we combine them and
provide a bound for the error ||zx — x} || based on the parameters of
Algorithm[T](i.e., the step-size -y, and the horizons P and C). Then,
we choose such parameters in order to guarantee a finite error. The
error bound available is in general not tight, and therefore it might be
possible to relax the conditions on the parameters while still ensuring
the convergence; which we will explore in future research.

4. SIMULATIONS

Inspired by [6]], and only as a proof of concept of our algorithm,
we consider a regression problem, where we are interested in recon-
structing a sparse time-varying signal y; from the noisy measure-
ments by = Ay + e, where the matrix A € R™*", the mea-
surement vector by, € R™ with m < n — in particular m = 25
and n = 50 — and the components of the error vector ey are drawn
from the normal distribution A (0, 10™2). We apply an elastic net to
solve the problem, i.e., we define g(x) = a||z||, and f(x;tr) =
(1/2) |Az — b2 + (1 — «) ||x||3 /2 for « € [0, 1], and we for-
mulate the sequence of time-invariant problems

1 1-aw
{iZH}Xa:—»bk|§-+iz

3 +exllll, ¢

©))

Each component of the signal to be reconstructed is either of the

form yi, = csin(wts, + gbi) where ¢, ¢° are random, or it is 0; w is

set as 1/20, so that we do half-a-turn every minute. The number and
index of the “active” components is fixed at 6.

In Fig. [[(a) we present the evolution of the error

x*(t},) = argmin
xeR™

E: = ||lwx — @] /6,

(the error divided by the number of non-zero components), labeled
as “Tracking error”, for different values of the prediction horizon P,
and a = 0.8, obtained with Ty = 0.1s, C = 5, v = 0.8/L and
minimizing the FBE with the line-search quasi-Newton. Notice that
a larger number of prediction steps yields a faster convergence rate
and a lower error, which justifies the use of the prediction-correction
scheme. Indeed in case we perform only a correction (P = 0) we
obtain the worst performance, which means that the ability to predict
the future solution enhances the performance of the optimization al-
gorithm. Note that, even with P = 5, the performance is better.
The quasi-cyclic nature of the error is due to the sinusoidal reference
signal.

As noted in Remark 4] a convex quadratic cost function f guar-
antees that the FBE is strongly convex. In this scenario, we can com-
pute a descent direction for the FBE without the need for the line-
search procedure included in the quasi-Newton algorithm of [20];
moreover, the quasi-Newton algorithms with and without line-search
yield the same results. We can also think of applying the gradi-
ent method, which has good convergence properties for strongly and
well-conditioned convex functions and which does not require the
computation of the Hessian of the FBE.

Fig.[T}b) depicts the evolution of the error for the quasi-Newton
and the gradient methods (with the parameter P = 10,C' = 5),
while Fig. [T[c) the number of matrix-vector products required by
the quasi-Newton with and without line-search, and the gradient.

Tracking error

S v

Il
== oo

100 4
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(a) Tracking error for different prediction horizons.
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Fig. 1: Experimental results.

Therefore we can choose between a more computationally demand-
ing quasi-Newton, or a gradient method that is simpler to implement
but obtains results close to the former.

5. CONCLUSION

In this paper, we presented a prediction-correction scheme for time-
varying optimization that employs the forward-backward envelope.
We described two Theorems that guarantee the convergence of the
solution computed by the algorithm to a neighborhood of the opti-
mal solution that depends on the sampling time. Finally we validated
the proposed algorithm with some numerical results. Future works
will address the problem of relaxing the requirements on the cost
functions, especially strong convexity, and perhaps convexity alto-
gether, together with extensive numerical validation and comparison
with state-of-the-art methods in specific applications, e.g., dynamic
{1 reconstruction.
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A. PROOFS

The sources of error for the proposed algorithm are the Taylor ap-
proximation in the prediction step, and the early termination of the
quasi-Newton minimization of the FBE.

A.1. Approximation error

Let M () be the FBE computed for hy, and g, explicitly defined as

M(z) = myin {hk(il:) +{(Vhi(z),y — )+ g(y) + W;f”Q},

and thus that solves the prediction problem @ﬂ
Minimizing this FBE requires that we solve the generalized equation
VM(z) 3 0, and we consider its parametrized version, defined as

VM(z) 3 p, (10)

where p € R".
Therefore the problem becomes that of finding the solution mapping

S(p) = {z € R" | F(p,x) = 0}, pc R*

where F : R? x R™ — R" is defined as F/(p,z) = VM(z) — p.
Reformulating the problem in this fashion we can make use of Dini’s
theorem [27, Th. 1B.1], reported here for convenience.

Theorem 3 (Dini [27, Th. 1B.1]) Let F' : R" x R™ — R" be con-
tinuously differentiable in a neighborhood of (P, &) and such that
F(p,z) = 0 and Vo F(p, &) is nonsingular. Then the solution
mapping S(p) has a single-valued localization s around p for &
which is continuously differentiable in a neighborhood of p with Ja-
cobian satisfying

Vs(p) = —Va=F(p,s(p)) 'V, F(p,s(p)).

Assume now that & is a solution to (T0) with p such that s(p) =
. Then Theoremholds for F(p,x) = VM(z) — p in a neigh-
borhood of (p, &) if F is continuously differentiable and has non-
singular Jacobian. These conditions are analyzed in the following:

e ['is differentiable in p everywhere, while to be differentiable
in x it must be that VM is differentiable, which is guar-
anteed in a neighborhood of & by [21, Theorem 4.7] under
Assumption|[T}

e By [20, Theorem 2.11] the Hessian of the FBE in a strong
local minimunt’|is positive definite, therefore Vo F'(p, &) =
V2M(z) is nonsingular if Z is a strong local minimum.

Hence as long as & is a strong local minimum it is possible to prove
that Theorem 3] holds for the problem at hand.

The next step is to apply Dini’s theorem to provide an upper
bound to the error. First notice that a function that is continuously
differentiable in a point y has Lipschitz constant the norm of its

INotice that since hj, depends only on & we omit to specify that the gra-
dient is computed w.r.t. .

2 A minimum z* of function A is said to be locally strong if there exists
a > 0such that h(z) —h(z*) = a ||z — z*||? for any z in a neighborhood
of z*.

gradient in y [27, p. 30]. Therefore, since V, F(p, s(p)) = I, then
s(p) is Lipschitz continuous in a neighborhood of p with constant

IVs@®)ll = IV F(p,2) | = || v*M(@) || = K.

As mentioned at the beginning of this proof, the aim is to define
an upper bound for the error introduced by the approximation of
the cost function, that is || — *(¢;+1)||. This is accomplished by
using the Lipschitz continuity of s

& —a* )| = l1s@) — sta)ll < K o — al

where it is necessary to find q such that s(q) = x*(tx4+1). No-
tice that @, := @*(tr11) must satisfy V M(x} ;) 5 0 where
M(aj ;) is the forward-backward envelope defined in (7). There-
fore by choosing

a=VM(zf, ) — VM(zf,,)
we have s(q) = @}, since
VM(z}, 1) 39 = VM(zf ) — VM(z},,)

is verified because by definition V M(z}, ;) 3 0.
Finally it follows that

|2~ @k || < K ||V, ) - VM)

By [20, Theorem 2.6] it follows that

VM(“’:+1) =~- "Yvwwf(m;ck+1§tk+1))Rw(w:+1)
: S’Y(a:z+1)R’Y(m:+l) an

where R, (y) = v+ (y—prox, ,(Y=7Va f(y; trt1))) is the resid-
ual. However, by the definition of residual it holds R, (x}, ;) = 0
which actually implies that V M(z}, ) = 0.

Similarly for M(a) it holds
V1\~/I(a}2‘+1) = Sw(wfﬂ)éw(mfﬂ)
with S, (z§, ) and R (z}, | ) defined substituting Ay (-) to f(-; tas1)

in Sy(x}, ;) and R+ (), ).
Therefore the approximation error can be upper bounded as

|2 - @k || < K || VNIt )

‘. (12)

We now proceed to bound K = ||[VZM(&) | and J :=
IVM(3 1)

First of all, using the fact that V2hy(y) = Vo f(zr;ts) =:
Qy; it follows S'.Y(mZH) = I — vQy, which is a positive definite
matrix. Indeed observe that by Assumption [I] the maximum and
minimum eigenvalues of Q) are, respectively: Ay (Qr) = L and
Am(Qk) = m, with L = m > 0. Therefore since the eigenvalues
of S., () are of the form \;(S,(x)) = 1 — vA:(Qy) it follows that

Mr(Sy () <1—ym and An(S,(x)) =1—~L, (13)

with 1 — ~vL > 0 because v < 1/L.
Furthermore it holds by [20, Theorem 2.10]

VIM(&) = 771 55(&) (1 — Py (®)54 (@)

where P, (&) is semi-definite positive and | P, ()| < 1.



A.l1.1. Computation of J
By the formula for the gradient of M(z) it holds

VM (@) < 19y @E )Ry () (14)

where by (T3) it holds | S, (z}_ ;)| < 1 — ym . Therefore to com-
pute J it is necessary to provide an upper bound to the norm of the
residual | R (2}, )]

Recalling the definition of the residual and by the fact that
R, (x},,) = 0 it holds

\IRw(wZ‘H)H = HRW(IE:H) - R’Y(wlf#—l)”
=71 PrOX»yg(l’ItH =YV f (@15 thr1))
- proxyg(m;l;-%—l —yVhg (wtﬂ))H
< | Vaf(@iiiiterr) — Vhe(zi))||
where the nonexpansiveness of the proximal operator was used to

derive the last inequality.
By using the definition of Ay, it follows

vaf(a:;:+1§ trt1) — th(wf+1))||
< || Vaf(@iiisti1) — Vaf(@es te) || +

1Qul |2k — @ + T2 | Vewf (@it
< |IVaf(@Fi1iten) — Vo f (mrs te)|| + L ||@f 0 — k|| + TeCo
where the upper bounds in Assumptions on the derivatives of f
were used.

The first term on the right-hand side of the inequality remains
now to be computed. It holds

Ve f (@ 15 the1) — Ve (@i t)||
< || Vaf @i thn) = Vo f(@rstie)|| +
+ Ve f(®rithe1) — Vaf(zete) ||
where by Lipschitz continuity
[Vl (@frsties) = Vaf @k tear)|| < L[|y r — |

and [|Va f(@rites1) — Vo f(@eite)|| <
pendix AJ).
Finally the results above yield

TsCo (see [14, Ap-

IRy (@) < 2(L [|aofh sy — @i || + TCo) (15)

and therefore
H:E -z H < 2K (1 —~ym)(L Hwk —xp H + T5Co).

The problem now is to bound Hmk -z, H in terms of
|k — x}||; first of all, it holds ||@x — i, || < |l@f,, — =] +
|zx — | and so an upper bound for ||z},, — | must be
found.

Recall that with ™*(¢) we denote the optimal solution of the
original time-varying problem (T)). Notice that Dini’s theorem holds
for the corresponding FBE at time ¢: Vo, M(x;t) with ¢t € Ry
around z*(t). Therefore the solution mapping x™*(¢) has a Lips-
chitz constant upper bounded by

|V M (1)) 1| | Ve M2 (0): )|
=K va M(w*(t),t)” .

The term K will be computed in the next section alongside K, while
the second term requires evaluating the time derivative of the gradi-
ent of the FBE. In particular, by derivative rules, it holds that

Vie M(x;t) = ViSy(2;t) Ry (23 t) + Sy(x;t) Vi Ry (25 8)

where the first term on the right-hand side can be ignored, since
at (x*(t);t) it is zero. By using the definition ([I), it holds that
Sy(x;t) = I — yVaa f(x;t), whose norm is upper bounded by
1 — ~ym; hence it remains only to compute an upper bound to the
norm of VR, (x; t).

By computing the time derivative of the residual, it follows that

="' Vi[prox, (@ — 7V f(;1))]

= Vi f(x;t)J proxwg(m —Vaf(x;t))
= Via f(x;t) Py (x;t)

VtRw(m; t)

where the second inequality is derived using the chain rule, and
the third by using the definition of the semi-definite positive matrix
P, (x;t) reported in [20].

Therefore it holds that

[VeRy (2™ () 6)|| < [[Veaf (2% (0); )] || P2 (2% (£); 1)]| < Co

since || Py (z*(t);t)]] < 1.
_ Finally, the solution mapping x*(t) has Lipschitz constant
K (1 —~m)Cy and so

iy — 2k || = ||k — 2] (16)

< K(l — ’7m)Co|tk+1 — tk| = K(l — 'ym)CoTs.

A.1.2. Computation of K

Let A, B € R™*" with A nonsingular, and denote with o, () and
o (+) the minimum and maximum singular values of a matrix, re-
spectively. The following facts hold true for symmetric nonsingular
matrices [28), Ch. 5].

LA™Y = onr (A7) = Lo (A):
2. om (AB) = om (A) om (B).

Therefore it follows
K = |V2NI(@) | = 1om (V2NI(2))

which can be bounded using lower bounds for o, (VQM(CE)) In
particular,

o (V@) 297 o (54(@)) o (1= Py (@), (2)))
a7
and the problem is to compute the minimum singular values of
S,(@) and (I — P,(@)5, (2)).
First of all, for a symmetric matrix A € R™*"™ itholds oy, (A) =
[Am (A)]. Recalling (T3) we have that o, (S}(:E)) >1—~L>0.
Since I — P, (&)S., (&) is symmetric and positive definite, then

o (1= Py(@)8,(@))) = An (I = Py(@)5,()))

and it is necessary to lower bound the spectrum of (I— P, (£)S, (&)).
It holds that

A (1= Py@)8,(@))) = 1= 2 (P (@), (2))



and an upper bound for Ans (Pw (€)S, (i)) must be found. No-

tice that P, (&)S,, (&) is symmetric and positive definite [20, Ap-
pendix B]. The following inequalities hold

An (ﬁw(@)gv(@)) = ’

where the fact that Hﬁ&,(:fc) H < 1 and the result (T3) were used.
Finally, these results yield

o (1= Py (@)8,(2))) = An ((T = P,(@)5,(2)))

=1-Aum (Pv(j)gv(‘i)

N——
WV
—_
|
-
|
2
g
Il
2
3
=

Finally, substituting (I8) and o, <
follows

W(a‘:)) > 1— ~L into (T7), it

Om (VQM(@)) >~ (1 —yL)ym = m(1 — L)

and thus 1
K ———.
m(1—~L)

Notice that the same bound holds for K as well since, like f,itis
hy € Sm,L(Rn).

19)

A.1.3. Approximation error bound

The results derived in the previous sections can be used to bound the
approximation error as follows

lo- sl < 2823 (1 o -

m(l —~L
L(1 —~m)
—=T Ts
m(l —~L) Co + T:Co
< ap Hazk — CB:H + ao (20)

where the coefficients are defined as

o — 2L(1 — ym)
e m(l —~L)
_ 1—~ym [L(1—~m)
o =20t | L )

with ag that linearly depends on the sampling time 7.

A.2. Early termination errors

The previous section derived an upper bound to the approximation
error introduced by the approximate FBE used in the prediction step
instead of the correct FBE. However there are two other sources of
errors, namely the early termination of the minimisation algorithms
applied to the M(x) and the FBE in the prediction and correction
steps, respectively. These will be the focus of the current section.

Assume that the minimisations are cartied out using the quasi-
Newton Algorithm 2 in [20] applied to the M or the M. This method
is described in Algorithm[2]in the general case.

Remark 7 In case L is not known, it is possible to apply Algo-
rithm 1 of [20|] which includes a line-search procedure for choosing

Y-

Algorithm 2 Quasi-Newton method for the FBE.

Input: 2° € R", envelope parameter v € (0, 1/L), maximum num-
ber of iterations I.
10

1:
2: whilei < I do '
3: compute the nonsingular matrix B* using the BFGS method
4: compute the descent direction
d' = —(B")" 'V M(&")
5. select the step-size 7° > 0 s.t. M(w’) < M(&) where
wl :v :i:l + Tldl
6: I prox (T — YVa f(x;tx))
7: t— 1+ 1
8: end while

The sequence {&™ }men produced by Algorithmcan be proved
to converge to a critical point with a super-linear rate, by a combi-
nation of Theorems 3.6 and 4.3 in [20]. Moreover the result holds
globally by strong convexity.

Since super-linear convergence implies linear convergence as
well, then there exist ¢ € (0, 1) (see (B) for an estimate of its value)
such that

p=12...P

2" —z|| < (||@" -z
and

et c=1,2,...,C

- mZHH < CH@C - mZHH

where &” and ¢ are the dummy variables used during prediction
and correction.

The dummy variables are initialized as follows: for the predic-
tion £° = @, for the correction ° = Trp1k = &¥. Therefore
iterating

[ @41 = || = || Zrr1im — rsp]| < ¢ |2 — @]

|@hsr — || < CO )| @rse — zhia |-

A.3. Overall error bound

During the previous sections the following bounds have been derived

ot < Jox— e a0 @D
foris—all < ool @
|Zher — @i || < C° || @rsape — i | (23)

and therefore the last thing to do is to combine them to derive a
bound for the error Ha)k;+1 — a:]’f+1| . Following the same steps of
(T4, Appendix B] from inequalities (ZT), (22) and the results above



it is possible to compute

[ @ik — @l || < [[Brae — 2| + |2 — @i |
<ok — 2| + |2 — =i |
— il +llz -
& — @i |
—ym)TsCo
( —7L)
"+ D)@ — @i
< [CP + a1(CP +1)] HCCk - m;’:H
+¢ %Hcﬂl)ao

Using now inequality (23) it follows

<
< (e — k|| + [k i)+

//\

" llow — ] + ¢

llker — k|| < Ax||lan — 2F ]| + Ao (24)

where

Ay = L¢P + an(¢” + 1))

Ao =¢° [CP% + (P + 1)a0] .

Therefore, for the algorithm to converge to a bounded error it
is necessary that A; < 1, which must be guaranteed by choosing
suitable prediction and correction horizons. Notice that Ag depends
linearly on the sampling time 7, therefore it holds that

lim sup H$k+1 — m:HH = O(CCTS).
—w

We have thus proved Theorem [T} [ |

A.3.1. O(TZ) convergence

Suppose now that Assumptlon@holds it is possible to show that the
error bound tends to O(722).
Consider that

| @k < [Vaf @5 tirn) = Vhn(atn|| < el
(25)
where € is the residual of the Taylor expansion of Vg f(+; tx41). Un-
der Assumption[3] the Taylor residual can be bound as follows

lell < 5 (1Vamaf (ons )| 211 — ]| +
+ T | Vewa f (5 te) || | @541 — ]| +
+ T | Vata f (s te) || 4 — @] +
+ T2 HVttmf(mk;tk)H)

<

Ly oh||* + 10 ||t — wul| + 5 TECs.

(26)

}mk+1

We want now to use this result to compute an upper bound to
||® — i, || that is stricter than @I). First of all, substituting (23]
into the bound we obtain

A UCRI I

‘ HR C’31c+1)

| < =m) el
27N

(mk+1

where we used the bound |5, (z¥, )| <
ing the bound 27) into (12) yields

1 — ym. Therefore apply-

|2 - @k || < K || VNIt |

1—~ym
< K(1—m) [lel| < T

= m(l—~L)

where the bound (T9) for K was used. Substituting (26) finally we
get

el

||:c—a3k+1|| aQHwk—mkH +a1”wk—w7§||+ao (28)
where
0 — 1—~m g
>T m(l—AqL) 2
1—~ym 1—~vym
=T CoCh + C
M (I AL) [ml Ly T ]
_ T2 1- —ym ClC§+
17'yL ml ~L) 2
1—ym 1
——CoC —Cs|.
+m(1—’yL) 0 2+2 3]

Notice that a; and ag linearly depend on T3 and T2, respectively.
With computations very similar to those carried out during the
previous section, exchanging (28)) for (1)), it is then possible to com-
pute the bound
2
e — i+ A e — a2+ A0 @9

Hwk-ﬂ - w:+1H < Az

where

=" + 1az
=C1¢" +ai(¢” +1)]

_¢© |:<P 1—9ym

=L

+ (CP + 1)0,0

In order to prove convergence, it is now possible to use the argu-
ment presented in [14) Appendix B], which guarantees convergence
if r > ¢7¢°,

oo T
G

1—~ym 1—~ym -t &
. {mu L) [m(l —py et C]} =T

and

=: R.

[0 — 2| <
Therefore the asymptotic error satlsﬁes

O(T2¢%) + O(TucC¢h),

. *
lim sup ||:1:11€ — T || <
—00

which proves Theorem 2} [ ]
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