
GENERATIVE GRAPH CONVOLUTIONAL NETWORK FOR GROWING GRAPHS

Da Xu, Chuanwei Ruan, Kamiya Motwani, Evren Korpeoglu, Sushant Kumar, Kannan Achan

Walmart Labs, Sunnyvale, California, USA

ABSTRACT
Modeling generative process of growing graphs has wide ap-
plications in social networks and recommendation systems,
where cold start problem leads to new nodes isolated from ex-
isting graph. Despite the emerging literature in learning graph
representation and graph generation, most of them can not
handle isolated new nodes without nontrivial modifications.
The challenge arises due to the fact that learning to gener-
ate representations for nodes in observed graph relies heav-
ily on topological features, whereas for new nodes only node
attributes are available. Here we propose a unified genera-
tive graph convolutional network that learns node represen-
tations for all nodes adaptively in a generative model frame-
work, by sampling graph generation sequences constructed
from observed graph data. We optimize over a variational
lower bound that consists of a graph reconstruction term and
an adaptive Kullback-Leibler divergence regularization term.
We demonstrate the superior performance of our approach on
several benchmark citation network datasets.

Index Terms— Graph representation learning, sequential
generative model, variational autoencoder, growing graph

1. INTRODUCTION

1.1. Background

Real-world graph structured data is often under dynamic
growth as new nodes emerge over time. However, directly
modeling the generation process from observed graph data
remains a difficult task due to the complexity of graph dis-
tributions. Recently, there have been significant advances
in learning graph representations by mapping nodes onto
latent vector space. The latent factors (embeddings) which
have simpler geometric structures can then be used for down-
stream machine learning analysis such as generating graph
structures [1] and various semi-supervised learning tasks [2].

Some early approaches in node embedding such as graph
factorization algorithm [3], Laplacian eigenmaps [4] and
HOPE [5] are based on deterministic matrix-factorization
techniques. Later approaches arise from random walk tech-
niques that provide stochastic measures for analysis, includ-
ing DeepWalk [6], node2vec [7] and LINE [8]. More recent
graph embedding techniques focus on building deep graph
covolutional networks (GCN) [9] as encoders that aggregate

neighborhood information [10]. Variants of GCN have been
proposed to tackle the computational complexity for large
graphs, such as FastGCN [11] which applies graph sampling
techniques. GraphSAGE [12] is another time-efficient induc-
tive graph representation learning approach that implements
localized neighborhood aggregations.

On the other side, advancements in generative models
compatible with deep neural networks such as variational
autoencoders (VAE) [13, 14] and generative adversarial net-
works (GAN) [15] have enabled direct modeling for gen-
eration of complex distributions. As a consequence, there
have been several recent work on deep generative models
for graphs [16, 17, 18, 19]. However, many of them only
deal with fixed graphs [19, 18] or graphs of very small sizes
[17, 1]. Moreover, most graph representation learning meth-
ods require at least some topological features from all nodes
in order to conduct neighborhood aggregations or random
walks, which is clearly infeasible for growing graphs with
isolated new nodes. To obtain embeddings and further gener-
ate graph structures for both new and old nodes, it is essential
to utilize node attributes. Also, instead of learning how the
observed graph is generated as a whole, the graph generation
should be decomposed into sequences that reflect how new
nodes are sequentially fitted into existing graph structures.

1.2. Related methods

Variational Autoencoder Unlike vanilla autoencoder, VAE
treats the latent factors z as random variables such that they
can capture variations in the observed data x [13]. VAE
has shown high efficiency in recovering complex multimodal
data distributions. The parameters in encoding distribution
qφ(z|x) and decoding distribution pθ(x|z) are optimized
over the evidence (variational) lower bound (ELBO)

log p(x) ≥ Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p0(z)).

The expectation with respect to qφ(z|x) is approximated
stochastically by reparametrizing z as µ + σ � ε, where ε
are independent standard Gaussian variables. This is also
referred to as ’reparameterization trick’ [13]. It allows sam-
pling directly from z so that the backpropagation technique
becomes feasible for training deep networks.

Graph Convolutional Network The original GCN [9]
deals with node classification as a semi-supervised learning

ar
X

iv
:1

90
3.

02
64

0v
1

 [
cs

.L
G

]
 6

 M
ar

 2
01

9

task. The layer-wise propagation rule is defined as H l+1 =
σ(ÂH lWl). Here Â is the normalized adjacency matrix with
Âi,j =

Ai,j√
deg(i)deg(j)

where deg(i) gives the degree of node

i. The σ(.) is some activation function such as ReLU. H l is
the output of the (l − 1)th layer and Wl is the layer-specific
aggregation weights. Here Wl ∈ Rdl×dl+1 where dl is the
dimension of the hidden units on lth layer.

Graph Convolutional Autoencoder (GAE) GAE is an
important extension of GCN for learning node representa-
tions for link prediction [18]. A two-layer GCN is used as
encoder z = GCN(A,X) = ÂReLu(ÂXW0)W1. When
adapting GCN into VAE framework (GCN-VAE), the hid-
den factors z are assumed to follow independent normal dis-
tributions which are parameterized by mean µ and log of
standard deviation σ, where µ = GCNµ(A,X) and σ =
GCNσ(A,X). The pairwise decoding (generative) distri-
bution for link between node i and j is simply f(〈zi, zj〉)
where f(.) is the sigmoid function. The ELBO is formulated
as Eq(z|X,A)[log p(A|z)]−KL(q(z|A,X)||p0(z)).

GraphRNN Recently a graph generation approach rely-
ing only on topological structure was proposed in [16]. It
learns the sequential generation mechanism by training on a
set of sampled sequences of decomposed graph generation
process. The formation of each new edge is conditioned on
the graph structure generated so far. Our approach refers to
this idea of sampling from decomposed generation sequences.

1.3. Present Work

This work addresses the challenge of generating graph struc-
ture for growing graphs with new nodes that are unconnected
to the previous observed graph. It has important mean-
ing for the cold start problems [20] in social networks and
recommender systems. The major assumption is that the un-
derlying generating mechanism is stationary during growth.
GraphRNN neither takes advantage of node attributes nor
does it naturally extends to isolated new nodes. Most other
graph representation learning methods have similar issues,
specifically the isolation from existing graph hinders passing
messages or implementing aggregation.

We deal with this problem by learning how graph struc-
tures are generated sequentially, for cases where both node at-
tributes and topological information exist as well as for cases
where only node attributes are available. To the best of our
knowledge, this work is the first of its kind in graph signal
processing.

2. METHOD

Let the input be observed undirected graph G = (V, E) with
associated binary adjacency matrix A, node attributes X ∈
Rn×d0 and the new nodes Vnew with attributes Xnew. Our
approach learns the generation of overall adjacency matrix
Anew for V ∪ Vnew.

2.1. Proposed Approach

We start by treating incoming nodes as being added one-by-
one into the graph. LetAπ

t ∈ Rt×t be the observed adjacency
matrix up to the tth step according to the ordering π. When
the (t + 1)th node is presented, we treat it as connected to
all of previous nodes with the same probability p̃, where p̃
may reflect the overall sparsity of the graph. Hence the new
candidate adjacency matrix denoted by Ãπ

t+1 is given by

(Ãπ
t+1)t+1,t+1 = 1, (Ãπ

t+1)1:t,1:t = A
π
t ,

p((Ãπ
t+1)k,t+1 = 1) = p̃ for k = 1, 2, · · · , t.

(1)

Similar to GraphRNN, we obtain the marginal distribution
for graph by sampling the auxiliary π from the joint distribu-
tion of p(G, (Aπ,Xπ)) with

p(G) =
∑
π

p((Aπ,Xπ)1[fG(A
π,Xπ) = G]),

where fG(A
π,Xπ) maps the tuple (Aπ,Xπ) back to a

unique graph G. Each sampled π gives a (Aπ,Xπ) that
constitutes one-sample mini-batch that drives the stochastic
gradient descent (SGD) for updating parameters.

To illustrate the sequential generation process, we decom-
pose joint marginal log-likelihood of (A≤n,X≤n) under the
node ordering π into

log p(Aπ
≤n,X

π
≤n) =

n−1∑
i=1

log p(Aπ
≤i+1,X

π
≤i+1|Aπ

≤i,X
π
≤i)

+ log p(Aπ
1 ,X

π
1).

(2)

The log-likelihood term of initial state log p(Aπ
1 ,X

π
1) is not

of interest as we focus on modeling transition steps.
Following VAE framework with hidden factors as Gaus-

sian variables, for each transition step, we use encoding dis-
tribution qiφ(z|A≤i,X≤i), generating distribution piθ(A|zi),
and conditional prior pi0(z|A≤i,X≤i). From now on we treat
the conditional on π as implicit for simplicity of notation. The
variational lower bound for each step is given by:

log p(A≤i+1,X≤i+1|A≤i,X≤i)
≥ Eqiφ(zi+1|Ã≤i+1,X≤i+1)

[log piθ(A≤i|zi)]

−KL(qiφ(zi+1|Ã≤i+1,X≤i+1)‖pi0(zi+1|A≤i,X≤i)) + C

≡ ELBOi + C.

(3)

HereC = log
∫
Z p

i
θ(X≤i|zi)qiφ(zi+1|Ã≤i+1,X≤i+1)dν(z)

is the reconstruction term for node attributes, which is not our
target. We will discuss the interpretation for our evidence
lower bound in Section 2.2. Given that we have assumed the
consistency of underlying generating mechanism, we use the
same set of parameters for each step.

When formulating encoding distribution, due to the effi-
ciency of GCN in node classification and linkage prediction,
we adopt their convolutional layers. The two-layer encoder
for the ith step is then given by:

µ(zi|X≤i+1) =
ˆ̃A≤i+1σ(

ˆ̃A≤i+1X≤i+1W0)W1,

diag(Σ(zi|X≤i+1) =
ˆ̃A≤i+1σ(

ˆ̃A≤i+1X≤i+1W0)W2,

(4)

where σ(.) is activation function and ˆ̃A denotes the normal-
ized candidate adjacency matrix constructed by (1). We also
adopt the pairwise inner product decoder for edge generation:

pi,j = p(Ai,j = 1|zi, zj) = f(〈zi, zj〉), (5)

with f(.) being the sigmoid function. Another reason for us-
ing simple decoder being that in VAE framework if the gener-
ative distribution is too expressive, the latent factors are often
ignored [21].

As for conditional priors of hidden factors, standard Gaus-
sian priors are no longer suitable because we already have in-
formation from previous i nodes at the (i+ 1)th step. Hence,
we use what the model has informed us till the ith step in an
adaptive way by treating zi+1 ∈ R(i+1)×d2 as [zi+1

1:i , z
i+1
i+1],

where zi+1
1:i are the hidden factors for previous nodes and zi+1

i+1

is for the new node. For zi+1
1:i we can use the encoding dis-

tribution pφ(z1:i|Ã≤i+1,X≤i+1) where the candidate adja-
cency matrix Ã≤i passes information from previous steps.
For the new node we keep using standard Gaussian prior. This
gives us

pi0(z
i+1
1:i |A≤i,X≤i) = pφ(z1:i|Ã≤i+1,X≤i+1)

zi+1
i+1 |A≤i,X≤i ∼ N(0, I)

(6)

We use the sum of negative ELBO in each transition step as
loss function (L = −

∑n−1
i=1 ELBOi) and obtain optimal ag-

gregation weights [W0,W1,W2] by minimizing this loss.
In practice, it’s not necessary to consider adding new

nodes one-by-one. Instead, the new nodes can be added in
a batch-wise fashion to alleviate computational costs. In
preliminary experiments we also observe that sampling uni-
formly at random from all node permutations gives very
similar results to sampling from BFS orderings, hence we
report results with the uniform sampling schema.

2.2. Adaptive Evidence Lower Bound

The loss function can be rearranged into (7) (with β = 1):

−
n−1∑
i=1

Eqiφ(zi+1|Ã≤i+1,X≤i+1)
[log pθ(A≤i|zi)]

+ β

n−1∑
i=1

KL(qiφ(z
i+1|Ã≤i+1,X≤i+1)‖pi0(zi+1|A≤i,X≤i)).

(7)

The first term sums up the reconstruction loss in each gen-
eration step. The second term serves as an adaptive regular-
izer that enforces the posterior of latent factors for observed
nodes to remain close to their priors which contain informa-
tion from previous steps. This can prevent the model from
overfitting the edges of the new nodes, which is quite helpful
in our batched version where new edges can outnumber orig-
inal edges, as we are fitting new nodes into original structure.

Similar to β-VAE [22], we also introduce the tuning pa-
rameter β as shown in (7) to control the tradeoff between the
reconstruction term and the adaptive regularization.

3. EXPERIMENT

We test our generative graph convolution network (G-GCN)
for growing graphs on two tasks: link prediction for isolated
new nodes, and for nodes in observed graph. We use three
benchmark citation network datasets: Cora, Citeseer and
Pubmed. Their details are described in [23]. Node attributes
are informative for all three datasets, which is indicated by
the results of GCN-VAE in [18].

3.1. Baselines

We compare our approach against GCN-VAE and a multi-
layer perceptron VAE (MLP-VAE) [13]. Here the encoder
of MLP-VAE is constructed by replacing the adjacency ma-
trices in GCN-VAE with non-informative identity matrices.
Their decoders are the same as our approach in (5). The dif-
ference is that GCN-VAE uses both topological information
and node attributes, while MLP-VAE only considers node at-
tributes. When predicting edges for isolated new nodes, for
all three methods, we plug the ’candidate’ adjacency matrix
Ã formulated in (1) with p̃ = 0 into the encoder-decoder
frameworks and recover the true adjacency matrix.

We choose these two methods to compare with, instead of
others, because both of them are able to utilize node attributes
and follow from VAE framework. As we mentioned, most
other graph embedding and graph generation techniques do
not work for growing graphs without nontrivial modifications.

3.2. Experiment Setup

Link prediction for isolated new nodes
For each citation network, a growing graph is constructed by
randomly sampling an observed subgraph containing 70%
of all nodes. The left-out nodes are treated as isolated new
nodes. The subgraph is used for training and the valida-
tion and test sets are formed by the edges between nodes in
observed subgraph and the new nodes as well as the edges
among the new nodes according to the original full graph.
As we are treating new nodes as being added in a batch-wise
fashion, the size of new node batch is set to be #{training nodes}

3 .
Link prediction for nodes in observed graph

Fig. 1. An illustration for the workflow of our approach at a transition step. The growing graph has an observed subgraph with
three nodes (node 0, 1 and 2) and an incoming new node (node 3). The informative conditional priors for latent factors z(3)0:2

contain structural information of the observed subgraph. The encoding distributions for all latent factors are formed according
to the candidate adjacency matrix where candidate edges (the dashed edges) are added to original subgraph.

Table 1. Results for link prediction tasks in citation networks. Standard error is computed over 10 runs with random initializa-
tions on random dataset splits. The first three rows are results for the first task on new nodes, and last three rows are results for
the second task on nodes in observed graph.

Method Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

Isolated new nodes
GCN-VAE 75.12 ± 0.4 76.32 ± 0.3 79.36 ± 0.3 82.13 ± 0.1 85.52 ± 0.2 85.43 ± 0.1
MLP-VAE 75.59 ± 0.7 75.64 ± 0.5 81.76 ± 0.6 83.67 ± 0.4 77.13 ± 0.4 77.24 ± 0.3

G-GCN 83.30 ± 0.3 85.03 ± 0.3 89.54 ± 0.2 91.30 ± 0.2 87.49 ± 0.2 87.24 ± 0.1
Nodes in observed graph

GCN-VAE 93.15 ± 0.4 94.42 ± 0.2 93.27 ± 0.4 94.42 ± 0.1 96.74 ± 0.4 96.94 ± 0.3
MLP-VAE 86.55 ± 0.2 87.21 ± 0.3 87.13 ± 0.2 89.34 ± 0.1 79.39 ± 0.5 79.53 ± 0.3

G-GCN 94.07 ± 0.4 95.15 ± 0.2 94.62 ± 0.7 95.93 ± 0.7 96.96 ± 0.6 97.27 ± 0.5

We then test our model on the original link predictions task
[18], which predicts the existence of unseen edges between
nodes in observed graph. In this task we adopt their exper-
iment setup, where 10% and 5% of the edges are removed
from the training graph and used as positive validation set
and test set respectively. The same amount of unconnected
node pairs are sampled and constitute the negative examples.

In both tasks we use a 400-dim hidden layer and 200-dim
latent variables, and train for 200 iterations using the Adam
optimizer with a learning rate of 0.001 for all methods. No-
tice that all three methods use encoding layers of the same
form and their decoding layers are all parameter-free, so they
already have the same number of parameters. The implemen-
tation of GCN-VAE on the second task is conducted using
their official Tensor-Flow code. The rest are conducted with
our own implementations with PyTorch.

3.3. Results

We report area under the ROC curve (AUC) and average pre-
cision (AP) scores for each model on the test sets for the two
tasks (Table 1).

Firstly, our approach outperforms both baselines in new
node link prediction task across all three datasets, in terms of
both AUC and AP. By comparing to MLP-VAE we show our
advantage of learning with topological information, and our
better performance over GCN-VAE indicates the importance

of modeling the sequential generating process when making
predictions on new nodes.

Secondly, G-GCN has comparable or even slightly bet-
ter results than GCN-VAE on link prediction task in observed
graph, which suggests that our superior performance on iso-
lated new nodes is not at the cost of the performance on nodes
in observed graph. This is within expectation since our ap-
proach learns the generation process as graph structure keeps
growing under our sequential training setup, where new nodes
are added in each step. It targets on nodes in observed graph
as well as new nodes while not overfitting either of them. In
a nutshell, our approach achieves better performance on link
prediction task for the growing graphs as a whole.

4. CONCLUSION AND FUTURE WORK

We propose a generative graph convolution model for grow-
ing graphs that incorporates graph representation learning
and graph convolutional network into a sequential generative
model. Our approach outperforms others in all benchmark
datasets on link prediction for growing graphs.

However, scalability remains a major issue as the com-
putational complexity depends on the size of full graph. The
idea of localized convolution from GraphSAGE [12] and
graph sampling from FastGCN [11] may have pointed out
promising directions, which we leave to future work.

5. REFERENCES

[1] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia, “Learning deep generative models
of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[2] Zhilin Yang, William W Cohen, and Ruslan Salakhut-
dinov, “Revisiting semi-supervised learning with graph
embeddings,” arXiv preprint arXiv:1603.08861, 2016.

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayana-
murthy, Vanja Josifovski, and Alexander J Smola, “Dis-
tributed large-scale natural graph factorization,” in Pro-
ceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 37–48.

[4] Mikhail Belkin and Partha Niyogi, “Laplacian eigen-
maps and spectral techniques for embedding and clus-
tering,” in Advances in neural information processing
systems, 2002, pp. 585–591.

[5] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and
Wenwu Zhu, “Asymmetric transitivity preserving graph
embedding,” in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining. ACM, 2016, pp. 1105–1114.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena,
“Deepwalk: Online learning of social representations,”
in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[7] Aditya Grover and Jure Leskovec, “node2vec: Scal-
able feature learning for networks,” in Proceedings of
the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp.
855–864.

[8] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei, “Line: Large-scale informa-
tion network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2015, pp. 1067–1077.

[9] Thomas N Kipf and Max Welling, “Semi-supervised
classification with graph convolutional networks,” arXiv
preprint arXiv:1609.02907, 2016.

[10] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini, “The graph
neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[11] Jie Chen, Tengfei Ma, and Cao Xiao, “Fastgcn: fast
learning with graph convolutional networks via impor-
tance sampling,” arXiv preprint arXiv:1801.10247,
2018.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec, “In-
ductive representation learning on large graphs,” in Ad-
vances in Neural Information Processing Systems, 2017,
pp. 1024–1034.

[13] Diederik P Kingma and Max Welling, “Auto-encoding
variational bayes,” arXiv preprint arXiv:1312.6114,
2013.

[14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra, “Stochastic backpropagation and approximate
inference in deep generative models,” arXiv preprint
arXiv:1401.4082, 2014.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio, “Generative adversar-
ial nets,” in Advances in neural information processing
systems, 2014, pp. 2672–2680.

[16] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamil-
ton, and Jure Leskovec, “Graphrnn: A deep generative
model for graphs,” arXiv preprint arXiv:1802.08773,
2018.

[17] Martin Simonovsky and Nikos Komodakis, “Graphvae:
Towards generation of small graphs using variational au-
toencoders,” arXiv preprint arXiv:1802.03480, 2018.

[18] Thomas N Kipf and Max Welling, “Variational graph
auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

[19] Aditya Grover, Aaron Zweig, and Stefano Ermon,
“Graphite: Iterative generative modeling of graphs,”
arXiv preprint arXiv:1803.10459, 2018.

[20] Blerina Lika, Kostas Kolomvatsos, and Stathes Had-
jiefthymiades, “Facing the cold start problem in rec-
ommender systems,” Expert Systems with Applications,
vol. 41, no. 4, pp. 2065–2073, 2014.

[21] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever, and
Pieter Abbeel, “Variational lossy autoencoder,” arXiv
preprint arXiv:1611.02731, 2016.

[22] Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner, “beta-vae: Learn-
ing basic visual concepts with a constrained variational
framework,” in International Conference on Learning
Representations, 2017.

[23] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad, “Collec-
tive classification in network data,” AI magazine, vol.
29, no. 3, pp. 93, 2008.

	1 Introduction
	1.1 Background
	1.2 Related methods
	1.3 Present Work

	2 Method
	2.1 Proposed Approach
	2.2 Adaptive Evidence Lower Bound

	3 Experiment
	3.1 Baselines
	3.2 Experiment Setup
	3.3 Results

	4 Conclusion and Future Work
	5 References

