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ABSTRACT
This paper proposes a group membership verification pro-

tocol preventing the curious but honest server from recon-
structing the enrolled signatures and inferring the identity of
querying clients. The protocol quantizes the signatures into
discrete embeddings, making reconstruction difficult. It also
aggregates multiple embeddings into representative values,
impeding identification. Theoretical and experimental results
show the trade-off between the security and the error rates.

Index Terms— group representation, discrete embed-
ding, aggregation, data privacy, verification.

1. INTRODUCTION

Verifiying that an item/device/individual is a member of a
group is needed for many applications granting or refusing
access to sensitive resources. Group membership verification
is not about identifying first and then checking membership.
Rather, being granted with access requires that the members
of the group could be distinguished from non-members, but it
does not require to distinguish members from one another.

Group membership verification protocols first enroll eligi-
ble signatures into a data structure stored at a server. Then, at
verification time, the structure is queried by a client signature
and the access is granted or not. For security, the data struc-
ture must be adequately protected so that a honest but curious
server cannot reconstruct the signatures. For privacy, verifi-
cation should proceed anonymously, not disclosing identities.

A client signature is a noisy version of the enrolled one,
e.g. due to changes in lighting conditions. The verification
must absorb such variations and cope with the continuous na-
ture of signatures. They must be such that it is unlikely that a
noisy version for one user gets similar enough to the enrolled
signature of any other user. Continuity, discriminability and
statistical independence are inherent properties of signatures.

This paper proposes a group membership verification pro-
tocol preventing a curious but honest server from reconstruct-
ing the enrolled signatures and inferring the identity of query-
ing (trusted) clients. It combines two building blocks:
Block #1: One building block hashes continuous vectors into
discrete embeddings. This lossy process limits the ability
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Fig. 1: Block diagram of the proposed model.

of the server to reconstruct signatures from the embeddings.
Block #2: The other building block aggregates multiple vec-
tors into a unique representative value which will be enrolled
at the server. The server can therefore not infer any specific
signature from this value. Sufficient information must be pre-
served through the aggregation process for the server to assert
whether or not a querying signature is a member of the group.

These two blocks can be assembled according to two con-
figurations: block #1 before block #2, the system acquires
and then hashes the signatures before aggregating them. The
opposite configuration is where acquired signatures are aggre-
gated before hashing the result of this aggregation. At query
time, the newly acquired signature is always hashed before
being sent to the server. Weaknesses and strengths of these
two configurations are explored in the paper.

2. RELATED WORK
Group membership verification protocols relying on cryptog-
raphy exist [1] but are more relevant to authentication, iden-
tification and secret binding. Other approaches apply homo-
morphic encryption to signatures, compare [2] and threshold
them [3, 4] in the encrypted domain, and need active partic-
ipation of clients. Approaches involving cryptography, how-
ever, are extremely costly, memory and CPU wise.

Group membership is linked to Bloom filters that are used
to test whether an element is a member of a set. When consid-
ering security, a server using Bloom filters cannot infer any
information on one specific entry [5]. Note that Bloom fil-
ters can not deal with continuous high dimensional signatures
and that queries must be encrypted to protect the privacy of
users [6, 7]. Bloom filters, adapted to our setup, however,
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form a baseline in our experiments (see Sect. 5.3).
Embedding a single high dimensional signature is quite

a standard technique. The closest to our work is the privacy-
preserving identification mechanism based on sparsifying
transform [8, 9, 10]. It produces an information-preserving
sparse ternary embedding, ensuring privacy of the data users
and security of the signature.

Aggregating signals into similarity-preserving representa-
tions is very common in computer vision [11, 12, 13]. They
do not consider security or privacy. In [14], Iscen et al. use
the group testing paradigm to pack a random set of image sig-
natures into a unique high-dimensional vector. It is therefore
an excellent basis for the aggregation block: the similarities
between the original non-aggregated signatures and a query
signature is preserved through the aggregation.

3. NOTATIONS AND DEFINITIONS
Signatures are vectors in Rd. If N users/items belong to the
group, then the protocol considers N signatures, S = {x1,
. . . , xN} ⊂ Rd. The signature to verify is a query vector y ∈
Rd. Group membership verification considers two hypotheses
linked to the continuous nature of the signatures:
H1: The query is related to one of the N vectors. For

instance, it is a noisy version of vector j, y = xj + n, with n
to be a noise vector.
H0: The query is not related to any vector in the group.

We first design a group aggregation technique s which
computes a single representation from all N vectors r :=
s(S). This is done at the enrollment phase. Variable ` de-
notes the size in bits of this representation.

At the verification phase, the query y is hashed by a func-
tion h of size ` in bits. This function might be probabilistic
to ensure privacy. The group membership test decides which
hypothesis is deemed true by comparing h(y) and r. This is
done by first computing a score function c and thresholding
its results: t := [c(h(y), r) > τ ].

3.1. Verification Performances
The performances of this test are measured by the probabil-
ities of false negative, pfn(τ) := P(t = 0|H1), and false
positive, pfp(τ) := P(t = 1|H0). As τ varies from −∞
and +∞, these measures are summarized by the AUC (Area
Under Curve) performance score. Another figure of merit is
pfn(τ) for τ s.t. pfp(τ) = ε, a required false positive level.

3.2. Security and Privacy
A curious server can reconstruct a signature x from its em-
bedding (for instance the query): x̂ = rec(h(x)). The mean
squared error is a way to assess its accuracy: MSE = E(‖X−
rec(h(X))‖2)/d. The best reconstruction is known to be the
conditional expectation: x̂ = E(X|h(x)).

Reconstructing an enrolled signature from the group rep-
resentation is even more challenging. Due to the aggregation
block, the curious server can only reconstruct a single vector
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2
y . N = 128, d =

1024 , σ2
n = 0.01 for varying S ∈ (0.1× d, 0.9× d).

x̂ from the aggregated representation, and this vector serves
as an estimation of any signatures in the group:

MSEe = (dN)−1
N∑
j=1

E(‖Xj − X̂‖2). (1)

4. VERIFICATION FOR A FEW GROUP MEMBERS

This section discusses the verification protocol when N is
small. We study the two different configurations for assem-
bling block #1 and block #2.

Block #1: Embedding. An embedding h : Rd → A`
maps a vector to a sequence of ` discrete symbols. This quan-
tization shall preserve enough information to tell whether two
embeddings are related, but not enough to reconstruct a sig-
nature. We use the sparsifying transform coding [8, 9]. It
projects x ∈ Rd to the range space of a transform matrix
W ∈ R`×d. The output alphabet A = {−1, 0,+1} is im-
posed by quantizing the components of Wx whose amplitude
is lower than λ to 0, the others to +1 or -1 according to their
sign. In expectation, S = 2dΦ(−λ/σx) symbols are non null.

Block #2: Aggregation. Aggregation a processes a set of
input vectors to produce a unique output vector. When block
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#1 is used before, that is, when considering s = a ◦ h , then
a : R`×N → R`. When block #2 is used before block #1, that
is when considering s = h ◦ a, then a : Rd×N → Rd.

4.1. Aggregation strategies
The nature of a highly depends on the type of vector the ag-
gregation function receives. When considering s = h ◦ a,
then a gets continuous signatures. In this case it is possible to
design two aggregations schemes that are:

a(S) =
∑
x∈S

x = G1N or (2)

a(S) = (G†)>1N . (3)

where G is the d × N matrix G := [x1, . . . ,xN ], 1N :=
(1, . . . , 1)> ∈ RN , and G† is the pseudo-inverse of G.
Eq. (2) is called the sum and (3) the pinv schemes in [14].

When considering s = a ◦ h, then a gets the embeddings
of the signatures. Two additional aggregation strategies are
the sum and sign pooling (4) and the majority vote (5):

r = sign(
∑
x∈S

h(x)) or (4)

ri = arg max
s∈{−1,0,1}

|{x ∈ S|h(x)i = s}| (5)

4.2. Four resulting schemes
The assemblage of the blocks and the aggregation strategies
overall create four variants. We name them:
• HoA-2: this scheme sums the raw signatures into a

unique vector before embedding it in order to obtain
r. It therefore corresponds to the case where s = h ◦ a,
the aggregation a being defined by (2).

• HoA-3: here also, aggregation precedes embedding,
s = h ◦ a, and a is defined by (3).

• AoH-4: this scheme embeds each signature before ag-
gregating with sum and sign pooling as defined by (4).

• AoH-5: here also, embedding precedes aggregation,
but the majority vote is used as defined by (5).

The score function c comparing the hashed query with the
group representation is always c(h(y), r) = −‖h(y)− r‖.

5. RECONSTRUCTION AND VERIFICATION

This section makes the following assumptions: i) Enrolled
signatures are modelled by X ∼ N (0d, σ

2
xId), ii) Square or-

thogonal matrix W known by the attacker.

5.1. Ability to reconstruct from the embedding
Now that W preserves the norm, the MSE on X is the same as
the mean square reconstruction error on Z = WX, which is
also white Gaussian distributed. Thanks to the independance
of the components of Z, the conditional expectation can be
computed component-wise. We introduce the density func-
tion conditioned on the intervalRs ⊂ R:

f(z|Rs) := φσx(z).1Rs(z)/P(Z ∈ Rs), (6)
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with intervals R0 = [−λ, λ], R1 = (λ,+∞), and R−1 =
(−∞,−λ). Function φσx is the p.d.f. of Z ∼ N (0;σ2

x) and
1Rs is the indicator function of intervalRs.

Observing the i-th symbol of h(x) equals s reveals that
zi ∈ Rs. This component is reconstructed as ẑi(s) :=
E(Z|Rs). Note that ẑi(0) = 0 because f(z|R0) is sym-
metric around 0. For s = 1, the reconstruction value equals

ẑi(1) =
∫ +∞
−∞ z.f(z|R1)dz =

σy
p1
√
2π
e
− λ2

2σ2x , where p1 :=

P(Z ∈ R1) = Φ(−λ/σx). By symmetry, ẑi(−1) = −ẑi(1),
and MSE admits the following close form:

MSE = σ2
x.MSE(λ) (7)

MSE(λ) := 1− 1

πΦ(−λ/σx)
e
− λ2
σ2x . (8)

This quantity starts at 1 − 2π−1 when λ = 0. The embed-
dings are then full binary words (p1 = 1/2). All components
are reconstructed by ±ẑi but with a large variance. As λ in-
creases, this variance decreases but less non-null components
are reconstructed. MSE(λ) achieves a minimum of ≈ 0.19
for λ ≈ 0.60, where 55% of the symbols of an embedding are
non null. Then, MSE(λ) increases up to 1 for a large λ: the
embeddings becomes sparser and sparser. When fully zero,
each component is reconstructed by 0, and MSE equals σ2

x.



5.2. Ability to reconstruct the signatures
The curious server tries to reconstruct a unique vector x̂ from
r which represents the N enrolled signatures. Note that r is
scale invariant: scaling the signatures by any positive factor
does not change r. Suppose that the curious server recon-
structs x̂ = κu. The best scaling minimizing MSEe (1) is:
κ? = ‖u‖−2u>m, with m := N−1

∑N
j=1 xj . The curious

server can not compute κ? giving birth to a larger distortion:

MSEe ≥
1

N

N∑
j=1

‖xj‖2 −
(u>m)2

‖u‖2
. (9)

This lower bound is further minimized by choosing u ∝m.
Therefore, aggregation (2) is less secure as the other

schemes do not allow the reconstruction of m. In the worst
case (2), the curious server estimates m byN−1rec(h(a(S))):

d.MSEe=E(‖Xj −N−1rec(h(a(S)))‖2) (10)

=E(‖Xj −
a(S)

N
‖2) +

E(‖a(S)− rec(h(a(S)))‖2)

N2
.

The first term is the squared distance between Xj and m,
whereas the second term corresponds to the error reconstruc-
tion for inverting the embedding. In the end:

MSEe = σ2
x

(
1− 1

N
(1−MSE(λ))

)
. (11)

This figure of merit increases with N because MSE(λ) ≤ 1,
∀λ ≥ 0: Packing more signatures increases security.

5.3. Verification performances
We compare to a baseline defined as a Bloom filter op-
timally tuned for given N and pfp having length `B =
dN | log pfp| log(2)−2e. An embedding h is mandatory to
first turn the real signatures into discrete objects. This
means that, under H1, a false negative happens whenever
h(xj + n) 6= h(xj).

Fig. 2 shows the AUC vs. MSE (7) for the schemes of
Sect. 4.1 for different sparsity S/d. Two schemes performs
better. For low privacy (small MSEq), HoA-3 achieves the
largest AUC (with 0.5 ≤ S/d ≤ 0.7) ; for high privacy, AoH-
4 is recommended (with S/d ≤ 0.2). In these regimes, the
performances are better than the Bloom filter.

Fig. 3 shows how the verification performances decrease
as the number N of enrolled signatures increases. As men-
tioned in [14], the behavior of the aggregation scheme de-
pends on the ratio N/d. The longer the signatures, the more
of them can be packed into one representation.

6. VERIFICATION FOR MULTIPLE GROUPS

When N is large, aggregating all the signatures into a unique
r performs poorly. Rather, for large N , we propose to parti-
tion the enrolled signature into M > 1 groups, and to com-
pute M different representatives, one per partition.

Random assignment: The signatures are randomly assigned
into M groups of size n = N/M .
Clustering: Similar signatures are assigned to the same
group. The paper uses the k-means algorithm to do so. Yet,
the size of the groups is no longer constant.

6.1. Verification performances
Denote by (p

(k)
fp , p

(k)
tp ) the operating point of group number

k, 1 ≤ k ≤ M . The overall system outputs a positive an-
swer when at least one group test is positive. Denote by
(Pfp(M), Ptp(M)) the performance of the global system. Un-
derH0, the query is not related to any vector. Therefore,

Pfp(M) = 1−
M∏
k=1

(1− p(k)fp ), (12)

Under H1, the query is related to only one vector belonging
to one group. A false negative occurs, if this test produces a
false negative and the other tests a true negative each:

Pfn(M) =

M∑
k=1

nk
N
p
(k)
fn

∏
l 6=k

(1− p(l)fp ). (13)

The operating point of a group test is mainly due to the size
of the group. The random assignment creates even groups (if
M divides N ), so these share the operating point (pfp, ptp).

Fig. 4 shows the experimental AUC and the one predicted
by (12) and (13) when M ranges from 8 to 512. Since clus-
tering makes groups of different sizes, we show the perfor-
mances versus nmin = min1≤k≤M (nk), where nk is the size
of k-th group. The theoretical formulas are more accurate for
random partitioning where the group are even. Estimations of
(p

(k)
fp , p

(k)
fn ) were less precise with the clustering strategy, and

this inaccuracy cumulates in (12) and (13).
Clustering improves the verification performances a lot

especially for HoA-3. A similar phenomenon was observed
in [14]. Yet, Fig. 5 shows that it does not endanger the sys-
tem: MSEe is only slightly smaller than for random assign-
ment, and indeed close to 1 for nmin ≥ 100. This is obtained
for M = 32 for HoA-3 giving AUC = 0.97. The space is so
big that the clusters are gigantic and not revealing much about
where the signatures are. However, the anonymity is reduced
because the server learns which group provided a positive test.
This is measured in term of k-anonymity by the size of the
smallest group, i.e. nmin. Fig. 4 indeed shows the trade-off
between k-anonymity and the verification performances.

7. CONCLUSION
This paper proposed four schemes for verifying the group
membership of continuous high dimensional vectors. The
keystones are the aggregation and embedding functions. They
prevent accurate reconstruction of the enrolled signatures,
while recognizing noisy version. However, the anonymity is
slightly revealed when managing many signatures aggregated
into several representatives: the server is only able to link
each signature to its group number. Yet, the full identity of
the user is preserved.
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