Loading [MathJax]/extensions/MathMenu.js
Joint Structured Graph Learning and Unsupervised Feature Selection | IEEE Conference Publication | IEEE Xplore

Joint Structured Graph Learning and Unsupervised Feature Selection


Abstract:

The central task in graph-based unsupervised feature selection (GUFS) depends on two folds, one is to accurately characterize the geometrical structure of the original fe...Show More

Abstract:

The central task in graph-based unsupervised feature selection (GUFS) depends on two folds, one is to accurately characterize the geometrical structure of the original feature space with a graph and the other is to make the selected features well preserve such intrinsic structure. Currently, most of the existing GUFS methods use a two-stage strategy which constructs graph first and then perform feature selection on this fixed graph. Since the performance of feature selection severely depends on the quality of graph, the selection results will be unsatisfactory if the given graph is of low-quality. To this end, we propose a joint graph learning and unsupervised feature selection (JGUFS) model in which the graph can be adjusted to adapt the feature selection process. The JGUFS objective function is optimized by an efficient iterative algorithm whose convergence and complexity are analyzed in detail. Experimental results on representative benchmark data sets demonstrate the improved performance of JGUFS in comparison with state-of-the-art methods and therefore we conclude that it is promising of allowing the feature selection process to change the data graph.
Date of Conference: 12-17 May 2019
Date Added to IEEE Xplore: 17 April 2019
ISBN Information:

ISSN Information:

Conference Location: Brighton, UK

Contact IEEE to Subscribe

References

References is not available for this document.