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ABSTRACT

Long Short-Term Memory (LSTM) has been proven an effi-
cient way to model sequential data, because of its ability to
overcome the gradient diminishing problem during training.
However, due to the limited memory capacity in LSTM cells,
LSTM is weak in capturing long-time dependency in sequen-
tial data. To address this challenge, we propose an Attention-
aware Bidirectional Multi-residual Recurrent Neural Network
(ABMRNN) to overcome the deficiency. Our model consid-
ers both past and future information at every time step with
omniscient attention based on LSTM. In addition to that, the
multi-residual mechanism has been leveraged in our model
which aims to model the relationship between current time
step with further distant time steps instead of a just previous
time step. The results of experiments show that our model
achieves state-of-the-art performance in classification tasks.

Index Terms— Long Short-Term Memory, recurrent
neural network, attention model, natural language process-
ing, residual network

1. INTRODUCTION

Compared with Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) are widely applied to
sequential data such as natural language processing [1] and
speech processing [2], while CNNs are more employed in
image processing fields [3–5]. Among the existing RNN
models, LSTM is one of the most widely approaches since
it initially solved gradient vanishing and exploding prob-
lems during RNN training [6] by introducing forget gate and
memory cell. Numerous RNNs variations [6–8] have been
proposed in previous literature to achieve the state-of-the-art
performance in different tasks, where LSTM is the corner-
stone of those structures. With the increase in the depth of
the layers, residual networks have proved their advantages in
both CNNs [9] and RNNs [10]. Residual networks provide
an alternative to LSTMs by connecting current and distant
time steps during training.

In this paper, we propose an Attention-aware Bidirec-
tional Multi-residual Recurrent Neural Network (ARMRNN)

and have shown improved performance in existing sequential
classification tasks. To summarize our contributions:

• We propose a algorithm which enables the updating of
the weights combining both previous and future time
steps.

• We leverage a multi-residual mechanism from exist-
ing residual network into the recurrent networks for se-
quence learning, through which we achieve the state-
of-the-art performance in classification tasks.

• We provide comprehensive analysis of the advantages
and disadvantages of current cutting-edge models in-
cluding RNNs and CNNs for sequence learning, espe-
cially in short-term text classification tasks.

2. RELATED WORK

Regarding improving the performance of classification tasks,
there are some directions towards networks exploration. First,
an increasing number of layers is employed for capturing fea-
tures. Second, various feature extraction methods such as
word2vec [11] and doc2vec [12] have been invented for bet-
ter words representations learning. Third, some variations to-
wards the interior structure units such as LSTM and GRU [7]
are proposed. With the development of neural networks, a
novel trend is to combine deeper networks and multiple neu-
ral network variations.

Since general CNNs or RNNs architectures do not fit well
in some tasks such as short-term text classification, the contri-
bution of this work lies in the fact that, it integrates advantages
of residual networks for the tasks of interest.

3. RESIDUAL LSTM PRELIMINARIES

LSTM solves gradient vanishing and exploding problems.
However, if the time sequence is too long, the dependency
between the former and latter information is neglected in
LSTM because current time step only depends on previous
time step. To enhance such a distant relationship, residual
network based on LSTM has been proposed [10, 13]. Figure
1 shows the general structure of a residual network. The basic

3582978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



idea of the recurrent residual network is to add a direct line
between different time steps to strengthen the connection.

h(t)h(t-1)h(t-2)h(1)h(0)

...

X(t)X(t-1)X(t-2)X(1)X(0)

h'(t)

Fig. 1. Residual Network. The dashed box means the updated
state in current time step.

Regarding the implementation of the residual network, for
each current time step t, we consider both of the previous time
step t − 1 and the additional specific previous time step (e.g.
we assume it is t(0) as Figure 1 shows).

Cnew
t−1 = Cold

t−1 + α ∗ C0 (1)

hnewt−1 = holdt−1 + α ∗ h0 (2)

where α represents the specific weight of how much infor-
mation is imported to current time step, C and h represent
cell states and hidden states respectively. RNN residual net-
works [10] leverage CNN residual network [9] and indeed im-
prove the performance of LSTM.

4. PROPOSED SCHEME

4.1. Attention Model

We leverage the attention model to enhance previous system
states correlation with the current state [14–16]. We define
each weighted summation (WS) as the whole attention within
the current time step and we illustrate the equations as below:

WS = Σtn
T=t1(aT × hT ) (3)

aT =
exp(W · hT )

Σtn
T=t1exp(W · hT )

(4)

Attention Model

h(t)h(t-1)h(t-2)h(t-3)h(t-4)h(t-5)h(t-6)

t

Energy

Fig. 2. Attention Model

In Equation 3, hT represents the hidden state value in
LSTM at time step T . aT is a scalar value representing the
weight at time step T . We compute aT by softmax form and
W is a parameter which needs to be learned. exp(W × hT )
represents the potential energy at time step T . Ideally, for ev-
ery time step T , we look back the whole previous states to
check the relationship with each others. However, due to the
limitation of computational power, we select a few past states
as a sliding window. Figure 2 shows one example of the at-
tention model. The highest attention we acquired is in ht−3
regarding to the current time step t.

4.2. Multi-residual LSTM

[9] initially proposed a promising residual learning frame-
work for deep learning network. They attempted to build a
block as:

y = F(x, {Wi}) + x (5)

where x and y are input and output vectors. The function
F(x, {Wi}) represents the residual mapping to be learned.
The operation F + x is performed by a shortcut connection
and element-wise addition. The residual network is initially
proposed in CNNs. However, we leverage the residual net-
works into RNNs as Figure 3 illustrates, finding the promis-
ing results. We get inspired by residual networks because of
the limitation of traditional LSTM, where the original LSTM
only considers the output from the previous time step as an
input of current time step. By combing residual and LSTM,
we connect any two distant states. Besides, we add an atten-
tion model to explore the relationships among the whole past
states.

h(t)h(t-1)h(t-2)h(1)h(0)

...

X(t)X(t-1)X(t-2)X(1)X(0)

h'(t)

Fig. 3. Multi-residual LSTM with attention Model

We illustrate our idea as Figure 3 shows. We connect
h(t − 2) and h(0) with current time step h(t) since h(t − 2)
and h(0) gained more attentions compared with other states.

4.3. Attention-aware Bidirectional Multi-residual LSTM

We initially propose an algorithm, which updates the weights
by combining both previous and future time steps. The equa-
tions are shown as below:

h′(t) = [
−→
h (t),

←−
h (t)] (6)
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−→
h′ (t− 1) =

−→
h (t− 1) + Σ−→

T
−→aT (tanh(CT )⊗ σ(xT )) (7)

←−
h′ (t− 1) =

←−
h (t− 1) + Σ←−

T
←−aT (tanh(CT )⊗ σ(xT )) (8)

where
−→
T ,
←−
T ∈ N, t− n ≤

−→
T ≤ t− 1, t+ 1 ≤

←−
T ≤ t+ n.

In Equation 7 and Equation 8
−→
h (t − 1) and

←−
h (t − 1)

are the original forward and backward hidden states at time
step t− 1 of bidirectional LSTM.

−→
h′ (t− 1) and

←−
h′ (t− 1) are

updated forward and backward hidden states at time step t−1
of the proposed ABMRNN. The residual we introduced here,
is the weighted summation of the hidden states from selected
time steps T based on attention scalar aT in Equation 4. The
hidden states at time step t − 1 are the input to compute the
output at time step t.

Input layer

Forward layer

Backward layer ...

...

...

...

... ...X(t-2) X(t-1) X(t) X(t+1) X(t+2)

h(t-2) h(t-1) h(t+2)h(t+1)h(t)

h(t+2)h(t+1)h(t)h(t-1)h(t-2)

Fig. 4. Bidirectional multi-residual LSTM with attention
model

Compared with previous models, we add one more layer
as Figure 4 shows. Both forward and backward training se-
quences are taken into considerations. The advantage is we
consider current time step together with both before and after
time steps information. Our model allows more time flexibil-
ities in terms of recalling distant past time steps, predicting
the future pieces of information and evaluating the influence
of each state.

4.4. Training procedure

ABMRNN training procedure is given as pseudo-code in Al-
gorithm 1. The procedure takes bi-directional input sequence
xbi, which is composed of forward and reversed order se-
quences. The objective is to minimize the loss function by
updating hidden states and the corresponding attention dy-
namics. F is denoted as the function of ABMRNN to obtain
output states. A is defined as the function of updated atten-
tion andH is defined as the function of updated hidden states.
W is defined as matrix weights while Wtmp is temporary up-
dated weights after attention model. h is defined as initial
hidden states while h∗ is defined as updated hidden states. y
is defined as initial output while y∗ is defined as updated out-
put.

Algorithm 1 ABMRNN training procedure
xbi ←↩ {−→x ,←−x } where −→x is the forward input, t is the
target value and←−x is the backward (reversed) input.
ε number of epochs
e←↩ 0
for e < ε do

for xT ∈ xbi do
y ←↩ F(xbi, {W})
Wtmp ←↩ A({W}), h∗ ←↩ H(h, {Wtmp})
y∗ ←↩ F(y, h∗, {Wtmp})
error E ←↩ ‖t− y∗‖
update W ←↩ backpropagate(W,E)

end for
e←↩ e+ 1

end for

5. EXPERIMENTS AND RESULTS

5.1. Task introduction

We evaluated our model and other existing architectures on
a challenging short-term text classification task (STCT). Un-
like traditional long text documents, short-term text such as
headings, news titles are usually concise, which somehow
hinder the classification performance due to the short infor-
mation. [17] introduces STCT which are usually construct by
20 Chinese words in coarse and refined categories. There are
eight labels in coarse categories and 59 labels in refined cate-
gories and the total number of text is 400,000. Besides, STCT
provides baseline performance of traditional statistical meth-
ods including support vector machine, decision tree and lo-
gistic regression.

AG NEWS is a collection news articles labelled in four
categories. We randomly select 8,000 samples for training
and 1000 samples for testing and the average length of each
title is 30.

IMDB movie review dataset is a binary sentiment classi-
fication task which contains movie reviews with positive and
negative labels. The maximum length in IMDB review is up
to 3000 and the average length is about 300. There are 50000
samples selected, and we use half for training and another half
for testing.

MNIST is an image classification task (10 categories). We
regard the image pixels as the sequential data and the flatted
images of MNIST are fed into the networks to predict the
image label. Therefore, sequential MNIST is assumed as a
solid task for long time dependencies modelling (up to 784).
There are 60000 training samples and 10000 testing samples.

After selecting the feature, for better illustrating the im-
provement, various RNN models are evaluated and compared
such as plain RNNs, LSTMs, Bidirectional LSTM, single
residual and multi-residual networks. Besides, we also utilize
1-D CNNs into those given sequential tasks to compare the
performance with RNNs.
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Model IMDB AG NEWS Seq. MNIST STCT
Plain LSTM 88.77% 82.33% 97.01% 93.01%

Bi-LSTM 89.91% 83.13% 98.31% 94.10%
2-layer LSTM 88.42% 82.27% 98.03% 93.16%

1-layer IndRNN 80.60% 84.98% 97.58% 93.02%
5-layer IndRNN 76.39% 84.74% 97.71% 88.89%

Plain RNN 77.12% 80.33% 97.66% 78.89%
5-layer RNN 50.00% 77.76% 97.45% 87.23%

1-D CNN 88.70% 84.61% 98.01% 94.50%
Attention-LSTM 89.50% 82.17% 98.31% 95.88%
Residual-LSTM 90.80% 84.71% 98.03% 93.55%
Proposed model 90.91% 86.31% 98.53% 96.50%

Table 1. Accuracy in classification Results

Our model applies two layers with 128 forward and 128
backward LSTM units. For better optimization, we utilized
[18] with gradient clipping. All the weights are randomly
initialized by the isotropic Gaussian distribution of variance
0.1. The dropout rate is 0.2 for each layer [19] and the batch
size is 64. Regarding the other models, we keep the consistent
settings, which have 128 hidden units in hidden layers. The
kernel size of 1-D CNNs is three.

5.2. Analysis

Results of the experiment are shown in Table 1. Our model
achieves the state-of-the-art performance in STCT. In STCT,
the highest accuracy rate is 96.50%, where the baseline per-
formance provided by [17] is 69.03%. Therefore we ad-
vance the ground truth about 39.7%. Even the plain RNN
model outperforms the statistical classification models (SVM
69.03% vs Plain RNN 78.89%). With the model becom-
ing more advanced, the performance increasingly improved
(Plain RNN 78.89% - LSTM 93.01% - Bi-LSTM 94.10%).
We also attempt other architectures in STCT such as In-
dRNN [8] and multi-layer RNNs. Our model outperforms all
the existing methods.

We are also concerned about the training loss and we se-
lect four models because they represent typical structures. We
only show the result of STCT because the training loss in
other tasks is similar with STCT. In Figure 5, the training
loss in plain RNNs keeps oscillating, which means it is hard
to converge. Both LSTM and IndRNN converge after only a
few epochs, however, LSTM converges slower than IndRNN.
Although the training loss of ABMRNN is a little higher than
that of LSTM, training loss can only guarantee marginally
lower bound but not upper bound regarding the accuracy rate.

Our model still outperforms the other RNN-based models
in IMDB, MNIST and AG’s news corpus. In IMDB datasets,
with the text length increasing up to 3000, the performance is
impacted due to more redundancies and noises are introduced.
However, some recent algorithms leverage very deep CNN-
related frameworks as feature extraction. The numbers of pa-

Fig. 5. STCT Training loss

rameters of [20] (7.8M) [21] (11.3M and 50M) are at least ten
times more than the number of our parameters (0.5M). Our
model demonstrates high efficiency in training and compar-
atively top accuracy. In sequtial MNIST, we don’t compare
with current popular 2-D CNNs because those models treat
MNIST as images instead of sequence.

6. CONCLUSION AND FUTURE WORK

We initially proposed a model towards short-term text clas-
sification, leveraging residual network and attention module.
The result has shown that our ABMRNN model outperforms
other conventional RNN models such as LSTM, IndRNN and
their variations, and achieves the state-of-the-art performance
in STCT. Compared with existing RNNs models, our model
is applied more to the short-term text classification because
each current time step considers both past and future distant
time steps to correct the relationship more precisely. Our fu-
ture work includes utilizing our ABMRNN in other tasks and
further optimizing our model.
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