
ar
X

iv
:2

00
3.

00
30

4v
1

 [
cs

.C
L

]
 2

9
Fe

b
20

20

VOICE TRIGGER DETECTION FROM LVCSR HYPOTHESIS LATTICES USING

BIDIRECTIONAL LATTICE RECURRENT NEURAL NETWORKS

Woojay Jeon, Leo Liu, and Henry Mason

Apple

One Apple Park Way, Cupertino, California

{woojay,lliu9,hmason}@apple.com

ABSTRACT

We propose a method to reduce false voice triggers of a

speech-enabled personal assistant by post-processing the hy-

pothesis lattice of a server-side large-vocabulary continuous

speech recognizer (LVCSR) via a neural network. We first

discuss how an estimate of the posterior probability of the

trigger phrase can be obtained from the hypothesis lattice us-

ing known techniques to perform detection, then investigate a

statistical model that processes the lattice in a more explicitly

data-driven, discriminative manner. We propose using a Bidi-

rectional Lattice Recurrent Neural Network (LatticeRNN) for

the task, and show that it can significantly improve detection

accuracy over using the 1-best result or the posterior.

Index Terms— voice trigger, detection, lattice, RNN

1. INTRODUCTION

Speech-enabled personal assistants are often conveniently ac-

tivated by use of a trigger phrase. In the case of the Apple

personal assistant Siri, English users can say “Hey Siri” to

activate the assistant and make a request in a single step, e.g.

“Hey Siri, how is the weather today in Cupertino?”

Typically, an on-device detector [1] decides whether the

trigger phrase was spoken, and if so allows the audio (includ-

ing the trigger phrase) to flow to a server-based large vocabu-

lary continuous speech recognizer (LVCSR). Because the on-

device detector is resource-constrained, its accuracy is limited

and leads to occasional “false triggers” where the user did not

speak the trigger phrase but the device wakes up anyway and

gives an unexpected response.

To reduce false alarms, one could conceive of a secondary

trigger phrase detector running on the server, utilizing a much

larger statistical model than the one on the device to more

accurately analyze the audio and override the device’s trigger

decision when it sees that no trigger phrase is present. This

method would optimally improve the accuracy because we are

using a dedicated acoustic model that is specifically trained

for the detection task. However, since this must be done for

every utterance, a more resource-efficient approach is to use

the output of the server-side LVCSR, which is run anyway for

every utterance, to perform the secondary detection.

The obvious method is to check whether the top recog-

nition result produced by the LVCSR begins with the trigger

phrase or not. However, the LVCSR is often biased toward

recognizing the trigger phrase at the beginning of the audio,

and therefore “hallucinates” the phrase in the 1-best result

even though it does not exist.

LVCSR output has been leveraged to keyword spotting

(or keyword search, which is closely related) in many past

studies. An early method used the sum of the likelihoods of

hypotheses containing the keyword in an n-best list [2]. How-

ever, an n-best list is a lossy representation of the word hy-

pothesis lattice, which is a richer representation of the output

of an ASR [3]. Hence, subsequent works have acted directly

on the hypothesis lattice by computing word posteriors [4] or

normalized confidence scores [5] or contextual features via

neural networks [6].

We will begin by examining how a secondary voice trig-

ger detector can be built using known processing techniques

on the LVCSR’s hypothesis lattice to compute a posterior

probability for the trigger phrase [4]. This method, how-

ever, is strictly limited by the reliability of the acoustic and

language models of the LVCSR, which may not be accurate

enough for falsely-triggered audio that often contains diverse

and unpredictable sounds that may or may not be speech. To

actively overcome some of the LVCSR’s errors, we consider

the use of a statistical model that can interpret the hypothesis

lattice in a discriminative, data-driven manner. We propose

the use of a bidirectional version of “LatticeRNN” [7] for this

purpose, and show that a significant gain in accuracy can be

obtained compared to using the simple posterior probability.

2. VOICE TRIGGER DETECTION BASED ON

LATTICE POSTERIORS

Consider the probability that a speech utterance with acoustic

features X starts with a designated trigger phrase. The trig-

ger phrase is a fixed sequence of n words, V = [v1, v2, · · · ,
vn]. The probability of the first n words of the utterance,

http://arxiv.org/abs/2003.00304v1

w1, · · · , wn being the trigger phrase is

P (w1 = v1, w2 = v2, · · · , wn = vn|X) (1)

If we can compute the above probability, we could simply

apply a threshold to obtain a trigger phrase detector.

The probability in Eq. (1) can be written as

∑

r1,r2···

P (w1 = v1, , · · · , wn = vn,

wn+1 = r1, wn+2 = r2, · · ·|X)
(2)

where r1, r2, · · · are the words following the trigger phrase.

With some abuse of notation, we write this as

∑

R

P (V,R|X) =

∑

R

p (V,R,X)

∑

W

p (W,X)
(3)

where V , R, and W represent the trigger phrase terms, the

words following the trigger phrase, and all the words in the

utterance, respectively.

If we assumed that the hypothesis lattice provided by an

LVCSR spans the entire space of all possible word sequences

for R and W (which is obviously a significant approximation,

since the lattice would be heavily pruned and show only a

small set of possible hypotheses), Eq. (3) can be solved in

a straightforward way using the well-known lattice forward-

backward algorithm [4, 8].

Stated more formally for our specific case, we have

p (V,R,X) =
∑

q

p (V,R,q, X) =
∑

q∈QV R

p (X,q) (4)

where q is a path through the hypothesis lattice, and QV R is

the set of all paths that contain the word sequence V +R.

Let qV be the front part of q that contains the trigger

phrase V and qR be the remainder of q that contains the

rest of the words R. Also let XV and XR denote the speech

frames consumed by qV and qR, respectively. We now have

p (V,R,X) =
∑

qV ∈QV

∑

qR∈QR(qV)

p (XV , XR,qV ,qR) (5)

where QV is the set of all initial partial paths that contain V ,

and QR(qV) is the set of all residual paths that follow qV .

This becomes

p (V,R,X) =
∑

qV ∈QV

p (XV ,qV)β (XR,qv) (6)

where

β (XR,qv) =
∑

qR∈QR(qV)

p (XR,qR) (7)

The joint distribution p(XV ,qV) in Eq. (6) is simply ob-

tained by multiplying the joint probabilities along the path

qV . If qV consists of n arcs λ1, · · · , λn, each i’th arc con-

suming the acoustic featuresXi and storing an acoustic model

score p (Xi|λi) and a contextual transition score (which in-

cludes the language model score and pronunciation score)

P (λi|λ1 · · ·λi−1), we have

p (XV ,qV) =

n
∏

i=1

p (Xi|λi)P (λi|λ1 · · ·λi−1) (8)

β(XR,qV) in Eq. (6) is the “backward” score of the node

at the end of path qV that we obtain by the lattice forward-

backward algorithm.

3. BIDIRECTIONAL LATTICE-RNN FOR VOICE

TRIGGER DETECTION

In the previous section, we discussed how to compute a voice

trigger posterior probability from the hypothesis lattice to per-

form voice trigger detection. A fundamental limitation to

such an approach is that it is directly exposed to errors in the

LVCSR’s acoustic and language model scores. If the LVCSR

is overly biased toward giving high scores to the voice trig-

ger phrase, the posterior in Eq. (3) will be consistently high

and the detection accuracy will suffer. The only tunable pa-

rameter in the system is the detection threshold applied to the

posterior, and one parameter (applied across all utterances) is

not sufficient for overcoming modeling errors in the LVCSR.

This motivates us to build a more general statistical model

with many more parameters that can use training examples to

learn how to process the hypothesis lattice in a data-driven

manner. In effect, the model learns the “mistakes” in the

LVCSR’s scores and actively tries to correct them. In our

proposed method, we employ Lattice Recurrent Neural Net-

works [7] that can read entire hypothesis lattices without re-

quiring us to heuristically convert them into lossy forms such

as n-best lists or word confusion networks.

3.1. The Bidirectional LatticeRNN

“LatticeRNN” [7] was originally introduced for the task of

classifying user intents in natural language processing. For a

topologically-sorted hypothesis lattice, the feature vector of

each arc is input to the neural network along with the state

vector of the arc’s source node, and the output of the neural

network becomes the arc’s state. For a given arc e that has

input feature vector x(e) whose source node p(e) possesses

state vector hf (p (e)), the neural network characterized by

input transformation Uf , state transformation Vf , bias bf ,

and activation function g(·) outputs the arc’s state hf (e):

hf (e) = g
{

UT
f x (e) + V T

f hf (p (e)) + bf

}

(9)

For a given node s, the state vector hf (s) is obtained via

a pooling function applied to the states of all incoming arcs:

hf (s) = fpool ({hf (e) : n (e) = s}) (10)

Since information propagates only in a forward direction

in this neural network, the state of an arc is determined only

by the arcs that precede it, and is unaffected by any arc that

succeeds it. If we imagined the state of the arcs for the words

“hey” and “Siri” as a measure of how relevant they are for the

detection task (analogous to their posterior probabilities), it

would be desirable for the states to also depend on the suc-

ceeding words. Words asking about the weather, for instance,

should make the trigger word arcs more relevant than a ran-

dom string of words resembling a TV commercial. Based on

this intuition, we also perform the same sort of propagation

in the reverse direction, in a similar manner as is done for

conventional RNNs [9].

In parallel to the forward propagation in Eq. (9), we have

another neural network parameterized by Ub, Vb, and bb,

which takes arc e’s feature vector x(e) and its destination

node’s backward state vector hb (n (e)) and outputs the arc’s

backward state vector hb (e):

hb (e) = g
{

UT
b x (e) + V T

b hb (n (e)) + bb

}

(11)

The backward state vector for a node s is obtained by ap-

plying the pooling function to the outgoing arcs:

hb (s) = fpool ({hb (e) : p (e) = s}) (12)

The forward state vector hf (sterm) of the lattice’s ter-

minal node and the backward state vector hb (sinit) of the

lattice’s initial node are concatenated to form a single state

vector hlat that represents the entire lattice.

hlat =
[

hT
f (sterm) hT

b (sinit)
]T

(13)

An additional feed forward network is then applied to hlat

to output a single scalar value that represents how likely the

input lattice starts with the voice trigger phrase.

4. EXPERIMENT

Data Type VT No VT Total

Training 12,271 6,731 19,002

Development 3,347 1,836 5,183

Evaluation 6,693 3,672 10,365

Table 1. Counts of utterances with (VT) and without (no-VT)

the voice trigger phrase collected for this experiment. Note

that “no-VT” utterances are relatively rare in production be-

cause most of them are immediately discarded by the device

and it is only those that are falsely accepted by the device-

side detector that can become part of our data. Hence, the

“no-VT” utterances must be collected over a much longer pe-

riod of time than “VT” utterances.

A labeled set of utterances was used for the experiment,

where some began with the “Hey Siri” trigger phrase and the

Method PM (%) PFA (%) EER (%)

Baseline 0.84 78.92 -

Posterior 0.84 79.08 35.68

Lattice RNN 0.84 22.55 5.51

Bidir Lat RNN 0.84 17.05 4.59

Table 2. Results on development data, showing the Proba-

bility of Miss (PM), Probability of False Alarm (PFA), and

Equal Error Rate (EER). The “Baseline” method is to check

the 1-best result of the LVCSR, and is not tunable. The

“Posterior” method is to threshold the trigger phrase poste-

rior probability in Section 2. “Lattice RNN” and “Bidir Lat

RNN” are the neural network models in Section 3. For each of

the bottom three methods, PM and PFA is from the operating

point where PM is closest to the baseline PM .

Method PM (%) PFA (%)

Baseline 0.84 78.46

Posterior 0.84 78.87

Lattice RNN 1.20 20.81

Bidir Lat RNN 1.15 17.57

Table 3. Results on evaluation data. For the bottom three

methods, detection thresholds corresponding to the operating

points in Table 2 (with fixed PM on the development data)

were used to obtain the values in this table.

rest did not. Table 1 shows the number of positive and nega-

tive examples used for training, development, and evaluation.

The “baseline” method is to simply look at the top recog-

nition result from the LVCSR and check whether it begins

with “Hey Siri” or not. As shown in Tables 2 and 3, the

Probability of Miss (failing to recognize the trigger phrase

when it is present) is usually less than 1%, but the Probability

of False Alarm (“hallucinating” the trigger phrase when it is

not present) is around 79% on this data set. Note that an ac-

tual Siri user would experience far less false alarms because

most utterances without the trigger phrase get immediately

discarded by the device-side detector, and it is only those oc-

casional few that slip past the detector that become part of our

negative data.

The “posterior” method is that described in Section 2,

where the voice trigger posterior probability is directly com-

puted from the hypothesis lattice. As is evident in the ROC

curve in Figure 1, above a certain threshold (where there is

a clear sharp angle in the curve) the voice trigger posterior

tends to be evenly distributed between true triggers and false

triggers and is hence a poor discriminant. Below the turning

point, however, most of the inputs are false triggers, so the de-

tector performs much better when the false alarm probability

is around 55% or higher. For the development data, the PFA

is 79.08% when PM is the same as the baseline (0.84%). The

threshold obtained from this operating point was applied to

the evaluation data to obtain the values in Table 3.

For the lattice RNNs, the arc feature vector x(e) consists

of 19 features: the log acoustic score, the log language model

score, the number of speech frames consumed by the arc, a

binary feature indicating whether the word is “hey”, a bi-

nary feature indicating whether the word is “Siri”, and 14

features representing the phone sequence of the arc’s word.

The phone sequence, which is variable length, is converted to

a 51-dimensional binary bag-of-phones vector and reduced to

14 dimensions via an autoencoder. The autoencoder is trained

using a lexicon of pronunciations for 700K words. The unidi-

rectional lattice RNN has 24 dimensions for the state vector,

which is fed to a feedforward network with 20 hidden nodes,

resulting in a total 1,577 parameters. The bidirectional lattice

RNN has 15 dimensions in each state vector, and is used with

a feedforward network with 15 hidden nodes, resulting in a

total 1,531 parameters. All inputs are mean- and variance-

normalized, with the scale and bias computed from the train-

ing data. The pooling function in Eq. (10) and (12) is the

arithmetic mean.

A huge accuracy gain is observed when using the lattice

neural network compared to the baseline or posterior-based

method, and more when using the bidirectional instead of uni-

directional lattice RNN.

In terms of runtime computational complexity, the pro-

posed method adds minimal latency to the existing LVCSR

because 1) the lattice is usually compact; over the training

data, the average number of arcs per lattice is 42.7 whereas

the average number of acoustic feature frames is 406, and 2)

the lattice RNN is small, with only around 1,500 parameters.

To retain the order of the phone sequence in each arc, we

also tried replacing the bag-of-phones features with the en-

coding from a sequence-to-sequence autoencoder, but did not

observe accuracy improvement with the given data.

5. CONCLUSION AND FUTURE WORK

We have proposed a novel method of voice trigger phrase de-

tection based on the hypothesis lattice of an LVCSR using a

Bidirectional Lattice Recurrent Neural Network, and showed

that it can significantly reduce the occurrence of false triggers

in a digital personal assistant.

Given that the LVCSR is being used for both trigger de-

tection and speech recognition in this case, future work will

investigate an objective function that jointly maximizes both

recognition accuracy and detection accuracy, which would

better fit the true goal of the system.

6. ACKNOWLEDGEMENTS

Hywel Richards and John Bridle made helpful comments that

improved the overall quality of this paper. False trigger data

used in experiments was originally collected via efforts coor-

dinated by Srikanth Vishnubhotla.

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P M

Fig. 1. ROC curve for posterior-based voice trigger detection

on development data showing Probability of Miss (PM) vs.

Probability of False Alarm (PFA). “×” marks the equal error

rate operating point and “•” marks the point where PM is

closest to the baseline’s.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
PFA

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P M

LatticeRNN
Bidir-LatticeRNN

Fig. 2. ROC curve on development data using Lattice RNN

and Bidirectional Lattice RNN. “×” indicates the equal er-

ror rate operating points and “•” indicates the operating point

where PM is closest to the baseline’s.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
PFA

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P M

LatticeRNN
Bidir-LatticeRNN

Fig. 3. ROC curve on evaluation data for voice trigger de-

tection using Lattice RNN and Bidirectional Lattice RNN.

The “•” for each curve indicates the operating point where

the threshold from the “•” in Figure 2 is applied to the evalu-

ation data.

7. REFERENCES

[1] S. Sigtia, R. Haynes, H. Richards, E. Marchi, and J. Bri-

dle, “Efficient voice trigger detection for low resource

hardware,” in Proc. Interspeech 2018, 2018, pp. 2092–

2096.

[2] M. Weintraub, “LVCSR log-likelihood ratio scoring for

keyword spotting,” in ICASSP, 1995.

[3] M. Saraclar and R. Sproat, “Lattice-based search for spo-

ken utterance retrieval,” in HLT-NAACL, 2004.

[4] I. Szöke, P. Schwarz, P. Matějka, and M. Karafiát, “Com-

parison of keyword spotting approaches for informal con-

tinuous speech,” in Eurospeech, 2005.

[5] D. Karakos, R. Schwartz, S. Tsakalidis, L. Zhang, S. Ran-

jan, T. Ng, R. Hsiao, G. Saikumar, I. Bulyko, L. Nguyen,

J. Makhoul, F. Grezl, M. Hannemann, M. Karafiat,

I. Szoke, K. Vesely, L. Lamel, and V. Le, “Score normal-

ization and system combination for improved keyword

spotting,” in 2013 IEEE Workshop on Automatic Speech

Recognition and Understanding, Dec 2013, pp. 210–215.

[6] Z. Chen and J. Wu, “A rescoring approach for keyword

search using lattice context information,” in Interspeech

2017, pp. 3592–3596.

[7] F. Ladhak, A. Gandhe, M. Dreyer, L. Mathias, A. Ras-

trow, and B. Hoffmeister, “LatticeRNN: Recurrent neu-

ral networks over lattices,” in Interspeech 2016, pp. 695–

699.

[8] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Con-

fidence measures for large vocabulary continuous speech

recognition,” IEEE Transactions on Speech and Audio

Processing, vol. 9, no. 3, pp. 288–298, March 2001.

[9] M. Schuster and K. K. Paliwal, “Bidirectional recurrent

neural networks,” IEEE Transactions on Signal Process-

ing, vol. 45, no. 11, pp. 2673–2681, Nov 1997.

	1 Introduction
	2 Voice trigger detection based on lattice posteriors
	3 Bidirectional Lattice-RNN for voice trigger detection
	3.1 The Bidirectional LatticeRNN

	4 EXPERIMENT
	5 CONCLUSION AND FUTURE WORK
	6 ACKNOWLEDGEMENTS
	7 References

