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ABSTRACT
The era of “data deluge” has sparked the interest in graph-based
learning methods in a number of disciplines such as sociology,
biology, neuroscience, or engineering. In this paper, we intro-
duce a graph recurrent neural network (GRNN) for scalable semi-
supervised learning from multi-relational data. Key aspects of the
novel GRNN architecture are the use of multi-relational graphs,
the dynamic adaptation to the different relations via learnable
weights, and the consideration of graph-based regularizers to pro-
mote smoothness and alleviate over-parametrization. Our ultimate
goal is to design a powerful learning architecture able to: discover
complex and highly non-linear data associations, combine (and se-
lect) multiple types of relations, and scale gracefully with respect to
the size of the graph. Numerical tests with real datasets corroborate
the design goals and illustrate the performance gains relative to
competing alternatives.

Index Terms— Deep neural networks, graph recurrent neural
networks, graph signals, multi-relational graphs.

1. INTRODUCTION

A task of major importance in the interplay between machine learn-
ing and network science is semi-supervised learning (SSL) over
graphs. In a nutshell, SSL aims at predicting or extrapolating nodal
attributes given: i) the values of those attributes at a subset of nodes
and (possibly) ii) additional features at all nodes. A relevant example
is protein-to-protein interaction networks, where the proteins (nodes)
are associated with specific biological functions, thereby facilitating
the understanding of pathogenic and physiological mechanisms.

While significant progress has been achieved for this problem,
most works consider that the relation among the nodal variables is
represented by a single graph. This may be inadequate in many con-
temporary applications, where nodes may engage on multiple types
of relations [1], motivating the generalization of traditional SSL ap-
proaches for single-relational graphs to multi-relational graphs1. In
the particular case of social networks, each layer of the graph could
capture a specific form of social interaction, such as friendship, fam-
ily bonds, or coworker-ties [2]. Albeit their ubiquitous presence,
development of SSL methods that account for multi-relational net-
works is only in its infancy, see, e.g., [1, 3].
Related work. A popular approach for graph-based SSL methods
is to assume that the true labels are “smooth” with respect to the
underlying network structure, which then motivates leveraging the
topology of the network to propagate the labels and increase classi-
fication performance. Graph-induced smoothness may be captured
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1500713, and 1442686, and by the Spanish grants MINECO KLINILYCS
(TEC2016-75361-R) and Instituto de Salud Carlos III DTS17/00158.

1Many works in the literature refer to these graphs as multi-layer graphs.

by kernels on graphs [4, 5]; Gaussian random fields [6]; or low-rank
parametric models based on the eigenvectors of the graph Laplacian
or adjacency matrices [7, 8]. Alternative approaches use the graph
to embed the nodes in a vector space, and classify the points [9–12].
More recently, another line of works postulates that the mapping be-
tween the input data and the labels is given by a neural network (NN)
architecture that incorporates the structure of the graph [13–15]. The
parameters describing the NN are then learned using labeled exam-
ples and feature vectors, and those parameters are finally used to
predict the labels of the unobserved nodes. See, e.g., [15], for state-
of-the-art results in SSL using a single-relational graph when nodes
are accompanied with additional features.
Contributions. This paper develops a deep learning framework for
SSL over multi-relational data. The main contributions are i) we
postulate a (tensor-based) NN architecture that accounts for multi-
relational graphs, ii) we define mixing coefficients that capture how
the different relations affect the desired output and allow those to be
learned from the examples, which enables identifying the underlying
structure of the data; iii) at every layer we propose a recurrent feed
of the data that broadens the class of (graph signal) transformations
the NN implements and facilitates the diffusion of the features across
the graph; and iv) in the training phase we consider suitable (graph-
based) regularizers that avoid overfitting and further capitalize on the
topology of the data.

2. MODELING AND PROBLEM FORMULATION

Consider a network ofN nodes, with vertex set V := {v1, . . . , vN},
connected through I relations. The connectivity at the i-th relation
is captured by the N ×N matrix Si, and the scalar Snn′i represents
the influence of vn to v′n under the i-th relation. In social networks
for example, these may represent the multiple types of connectivity
among people such as Facebook, LinkedIn, and Twitter; see Fig.1.
The matrices {Si}Ii=1 are collected in the N ×N × I tensor S. The
graph-induced neighborhood of vn for the i-th relation is

N (i)
n := {n′ : Snn′i 6= 0, v′n ∈ V}. (1)

We associate an F×1 feature vector xn to the n-th node, and collect
those vectors in theN×F feature matrix X := [x>1 , . . . ,x

>
N ]>. The

entryXnp may denote, for example, the salary of the n-th individual
in the LinkedIn social network.

We also consider that each node n has a label of interest yn ∈
{0, . . . ,K − 1}, which may represent, for example, the education
level of a person. In SSL we have access to the labels only at a subset
of nodes {yn}n∈L, with L ⊂ V . This partial availability may be
attributed to privacy concerns (medical data); energy considerations
(sensor networks); or unrated items (recommender systems). The
N × K matrix Y is the “one-hot” representation of the true nodal
labels, that is, if yn = k then Yn,k = 1 and Yn,k′ = 0,∀k′ 6= k.
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Fig. 1: A social multi-relational network of N = 6 people.

The goal of this paper is to develop a deep learning architecture
based on multi-relational graphs that, using as input the features in
X, maps each node n to a corresponding label yn and, hence, esti-
mates the unavailable labels.

3. PROPOSED GRNN ARCHITECTURE

Deep learning architectures typically process the input information
using a succession of L hidden layers. Each of the layers is com-
posed of a conveniently parametrized linear transformation, a scalar
nonlinear transformation, and, oftentimes, a dimensionality reduc-
tion (pooling) operator. The intuition is to combine nonlinearly local
features to progressively extract useful information [16]. GNNs tai-
lor these operations to the graph that supports the data [13], includ-
ing the linear [17], nonlinear [17] and pooling [14] operators. In this
section, we describe the architecture of our novel multi-relational
GRNN, that inputs the known features at the first layer and outputs
the predicted labels at the last layer. We first present the operation of
the GNN, GRNN, and output layers, and finally discuss the training
of our NN.

3.1. Single layer operation

Let us consider an intermediate layer (say the lth one) of our archi-
tecture. The output of that layer is the N × I × P (l) tensor Ž

(l)

that holds the P (l) × 1 feature vectors ž
(l)
ni ,∀n, i, with P (l) being

the number of output features at l. Similarly, the N × I × P (l−1)

tensor Ž
(l−1)

represents the input to the layer. Since our focus is on
predicting labels on all nodes, we do not consider a dimensionality
reduction (pooling) operator in the intermediate layers. As a result,
the mapping from Ž

(l−1)
to Ž

(l)
can be split into two steps. First,

we define a linear transformation that maps the N × I ×P (l) tensor
Ž

(l−1)
into the N × I × P (l) tensor Z(l). The intermediate feature

output Z(l) is then processed elementwise using a scalar nonlinear
transformation σ(·) as follows

Ž
(l)

inp := σ(Z
(l)
inp). (2)

Collecting all the elements in (2), we obtain the output of the l-th
layer Ž

(l)
. A common choice for σ(·) is the rectified linear unit

(ReLU), i.e. σ(c) = max(0, c) [16].
Hence, the main task is to define a linear transformation that

maps Ž
(l−1)

to Z(l) and is tailored to our problem setup. Tradi-
tional convolutional NNs (CNNs) typically consider a small number
of trainable weights and then generate the linear output as a convo-
lution of the input with these weights [16]. The convolution com-
bines values of close-by inputs (consecutive time instants, or neigh-
boring pixels) and thus extracts information of local neighborhoods.

GNNs have generalized CNNs to operate on graph data by replac-
ing the convolution with a graph filter whose parameters are also
learned [13]. This preserves locality, reduces the degrees of freedom
of the transformation, and leverages the structure of the graph.

To that end, we first consider a step that combines linearly the
information within a graph neighborhood. Since the neighborhood
depends on the particular relation (1), we obtain for the i-th relation

h
(l)
ni :=

∑
n′∈N (i)

n

Snn′iž
(l−1)

n′i . (3)

While the entries of h(l)
ni depend only on the one-hop neighbors of

n (one-hop diffusion), the successive application of this operation
across layers will increase the reach of the diffusion, spreading the
information across the network. An alternative to account for multi-
ple hops is to apply successively (3) within one layer, which is left
as future work. Next, to learn features in the graph data, we combine
the entries in h

(l)
ni using (trainable) parameters as follows

Z
(l)
inp :=

I∑
i′=1

R
(l)

ii′ph
(l)
ni

>
w

(l)

ni′p, (4)

where the P (l−1) × 1 vector w
(l)

ni′p mixes the features and R(l)

ii′p

mixes the outputs at different graphs. The P (l−1) × N × I × P (l)

tensor W(l) collects the feature mixing weights {w(l)

ni′p}, while the

I × I ×P (l) tensor R(l) collects the graph mixing weights {R(l)

ii′p}.
Another key contribution of this paper is the consideration of R as
a training parameter, which endows the GNN with the ability of
learning how to mix (combine) the different relations encoded in
the multi-relational graph. Clearly, if prior information on the de-
pendence among relations exists, this can be used to constrain the
structure R (e.g., by imposing to be diagonal or sparse). Upon col-
lecting all the scalars {Z(l)

inp} in the I × N × P (l) tensor Z(l), we
summarize (3), (4) as follows

Z(l) := f(Ž
(l−1)

;θ(l)
z ), where (5)

θ(l)
z := [vec(W(l)); vec(R(l))]>. (6)

Recurrent GNN layer: Successive application of L GNN layers
diffuses the input X across the L-hop graph neighborhood, cf. (3).
However, the exact size of the relevant neighborhood is not always
known a priori. To endow our architecture with increased flexibility,
we propose a recurrent GNN (GRNN) layer that inputs X at each
l and, thus, captures multiple types of diffusion. Hence, the linear
operation in (5) is replaced by the recurrent (autoregressive) linear
tensor mapping [16, Ch. 10]

Z(l) := f(Ž
(l−1)

;θ(l)
z ) + f(X;θ(l)

x ) (7)

where θ
(l)
x encodes trainable parameters, cf. (6). When viewed as

a transformation from X to Z(l), the operator in (7) implements a
broader class of graph diffusions than the one in (5). If l = 3 for
example, then the first summand in (7) is a 1-hop diffusion of a sig-
nal that corresponded to a 2-hop (nonlinear) diffused version of X
while the second summand diffuses X in one hop. At a more in-
tuitive level, the presence of the second summand also guarantees
that the impact of X in the output does not vanishes as the number
of layers grow. The autoregressive mapping in (7) allows the archi-
tecture to further model time-varying inputs and labels, which mo-
tivates our future work towards predicting dynamic processes over
multi-relational graphs2.

2The recursive feed of X is also known as a skip connection [18].



Fig. 2: GRNN; L hidden (black) and one output (red) layers

3.2. Initial and final layers

The operation of the first and last layers is very simple. Regarding
layer l = 1, the input Ž

(0)
is defined using X as

ž
(0)
ni = xn for all (n, i). (8)

On the other hand, the output of our graph architecture is obtained
by taking the output of the layer l = L and applying

Ŷ := g(Ž
(L)

;θg), (9)

where g(·) is a nonlinear function, Ŷ is an N ×K matrix, Ŷn,k rep-
resents the probability that yn = k, and θg are trainable parameters.
The function g(·) depends on the specific application, with the nor-
malized exponential function (softmax) being a popular choice for
classification problems.

For notational convenience, the global mapping from X to Ŷ
dictated by our GRNN architecture –i.e., by the sequential applica-
tion of (7)-(9)– is denoted as

Ŷ := F(X; {θ(l)
z }, {θ(l)

x },θg), (10)

and represented in the block diagram depicted in Fig. 2.

3.3. Training and graph-smooth regularizers

The proposed architecture depends on the weights in (7) and (9).
We estimate these weights by minimizing the discrepancy between
the estimated labels and the given ones. Hence, we arrive at the
following minimization objective

min
{θ(l)

z },{θ
(l)
x },θg

Ltr(Ŷ,Y) + µ1

I∑
i=1

Tr(Ŷ>SiŶ)

+µ2ρ({θ(l)
z }, {θ(l)

x }) + λ

L∑
l=1

‖R(l)‖1

s.t. Ŷ = F(X; {θ(l)
z }, {θ(l)

x },θg). (11)

In our classification setup, a sensitive choice for the fitting cost is
to use Ltr(Ŷ,Y) := −

∑
n∈L

∑K
k=1 Ynk ln Ŷnk the cross-entropy

loss function over the labeled examples.
Note also that three regularizers have been considered. The first

(graph-based) regularizer promotes smooth label estimates over the
graphs [5], and ρ(·) is an L2 norm over the GRNN parameters that is
typically used to avoid overfitting [16]. Finally, the L1 norm in the
third regularizer promotes learning sparse mixing coefficients and,
hence, promotes activating only a subset of relations at each l. The
backpropagation algorithm [19] is employed to minimize (11). The
computational complexity of evaluating (7) scales linearly with the
number of nonzero entries in S (edges), cf. (3).

To recap, while most of the works in the GNN literature use a
single graph with one type of diffusion [13, 15], we have proposed
a (recurrent) multi-relational GNN architecture that: adapts to each
graph with R; uses a simple but versatile recurrent tensor mapping
(7); and includes several types of graph-based regularizers.

4. NUMERICAL TESTS

We test the proposed GNN with L = 2, P (1) = 64, and P (2) = K.
The regularization parameters {µ1, µ2, λ} are chosen based on the
performance of the GRNN in the validation set for each experi-
ment. For the training stage, an ADAM optimizer with learning rate
0.005 was employed [20], for 300 epochs3 with early stopping at 60
epochs4. The multiple layers of the graph in this case are formed
using κ-nearest neighbors graphs for different values of κ (i.e., dif-
ferent number of neighbors). This method computes the link be-
tween n and n′ based on the Euclidean distance of their features
‖xn − x′n‖22. The simulations were run using TensorFlow [21] and
the code is available online5.

4.1. Robustness of GRNN

This section reports the performance of the proposed architecture
under perturbations. Oftentimes, the available topology and feature
vectors might be corrupted (e.g. due to privacy concerns or because
adversarial social users manipulate the data to sway public opinion).
In those cases, the observed S and X can be modeled as

S =Str + OS (12)

X =Xtr + OX. (13)

where Str and Xtr represent the true topology and features and
OS and OX denote the corresponding additive perturbations. We
draw OS and OX from a zero mean white Gaussian distribution
with specified signal to noise ratio (SNR). The robustness of our
method is tested in two datasets: i) A synthetic dataset ofN = 1000
points that belong to K = 2 classes generated as xn ∈ RF×1 ∼
N (µ, 0.4), n = 1, . . . , 1000 with F = 10 and µ = 0, 1 corre-
sponding to the different classes. ii) The ionosphere dataset, which
contains N = 351 data points with F = 34 features that belong
to K = 2 classes [22]. We generate κ-nearest neighbors graphs by
varying κ, and observe |L| = 200 and |L| = 50 nodes uniformly at
random.

With this simulation setup, we test the different GRNNs in SSL
for increasing the SNR of OS (Figs. 3a, 3c) and OX (Figs. 3b, 3d).
We deduce from the classification performance of our method in Fig.
3 that multiple graphs leads to learning more robust representations
of the data, which testifies to the merits of proposed multi-relational
architecture.

4.2. Classification of citations graphs

We test our architecture with three citation network datasets [23].
The citation graph is denoted as S0, its nodes correspond to different
documents from the same scientific category, and Snn′0 = 1 implies
that paper n cites paper n′. Each document n is associated with a
feature vector xn that measures the frequency of a set of words, as
well as with a label yn that indicates the document’s subcategory.

3An epoch is a cycle through all the training examples
4Training stops if the validation loss does not decrease for 60 epochs
5https://sites.google.com/site/vasioannidispw/github
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Fig. 3: Classification accuracy on synthetic (a), (b) and ionosphere (c), (d).

Dataset Nodes N Classes K Features F |L|
Cora 2,708 7 1,433 140

Citeseer 3,327 6 3,703 120
Pubmed 19,717 3 500 30

Table 1: Citation datasets

“Cora” contains papers related to machine learning, “Citeseer” in-
cludes papers related to computer and information science, while
“Pubmed” contains biomedical papers, see also Table 1.

To facilitate comparison, we reproduce the same experimental
setup than in [15], i.e., the same split of the data in train, validation,
and test sets. We test two architectures: a) a GRNN using only the
original citation graph S0 (and, hence, with I = 1); and b) a mul-
tirelational GRNN that uses an extra 1-nearest neighbor graph (so
that I = 2). Table 2 reports the classification accuracy of various
SSL methods. It is observed that: i) GNN approaches (ours, as well
as [15]) outperform competing alternatives, ii) our GRNN schemes
always outperform [15] (either with I = 1 or I = 2). This illustrate
the potential benefits of the recurrent feed in (7) –not used in [15]–
as well as the use of multi-relational graphs.

6µ1 = 5× 10−5, µ2 = 5× 10−5, λ = 10−4, dropout rate=0.9
7µ1 = 2× 10−6, µ2 = 5× 10−5, λ = 10−4, dropout rate=0.9

Method Citeseer Cora Pubmed
ManiReg [4] 60.1 59.5 70.7
SemiEmb [9] 59.6 59.0 71.7

LP [6] 45.3 68.0 63.0
Planetoid [10] 64.7 75.7 77.2

GCN [15] 70.3 81.5 79.0
GRNN6 70.8 82.8 79.5

GRNN (multi-relational)7 70.9 81.7 79.2

Table 2: Classification accuracy for citation datasets

5. CONCLUSIONS

This paper put forth a novel deep learning framework for SSL that
utilized an autoregressive multi-relational graphs architecture to se-
quentially process the input data. Instead of committing a fortiori
to a specific type of diffusion, our novel GRNN learns the diffusion
pattern that best fits the data. The proposed architecture is able to
handle scenarios where nodes engage in multiple relations, can be
used to reveal the structure of the data, and is computationally af-
fordable, since the number of operations scaled linearly with respect
to the number of graph edges. Our approach achieves state-of-the-
art classification results on graphs when nodes are accompanied by
feature vectors. Future research includes investigating robustness to
adversarial topology perturbations, predicting time-varying labels,
and designing of pooling operators.
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