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ABSTRACT

3D shape recognition has attracted a great interest in com-

puter vision due to its large number of important and exciting

applications. This has led to exploring a variety of approaches

to develop more efficient 3D analysis methods. However, cur-

rent works take into account descriptions of global shape to

generate models, ignoring small differences causing the prob-

lem of mismatching, especially for high similarity shapes.

The present paper, therefore, proposes a new approach to rep-

resent 3D shapes based on graph formulation and its spec-

tral analysis which can accurately represent local details and

small surface variations. An adaptive graph is generated over

the 3D shape to characterise the topology of the shape, fol-

lowed by extracting a set of discriminating features to charac-

terise the shape structure to train a classifier. The evaluation

results show that the proposed method exceeds the state-of-

the-art performance by 4% for a challenging dataset.

Index Terms— 3D shape representation, Graph theory,

Connectivity, Growing Neural Gas (GNG), Graph spectral

analysis.

1. INTRODUCTION

The past decade has witnessed a great interest in analysing

and understanding 3D shapes because it contributes to ap-

plications, such as, gaming [1–3], security [4, 5] and hu-

man activity understanding [6, 7]. The existing work on 3D

shape recognition can be categorised into three different ar-

eas. Firstly, deep learning techniques [8, 9] show a great im-

provement in the recognition level. Due to the amount of

training and data needed, it is not suitable for all datasets.

Secondly, model-based approaches [10, 11] provide an alter-

native representation such as skeleton representation based on

the shape silhouettes. However, high similarity shapes are still

challenging for these approaches. Lastly, feature-based ap-

proaches [12–15] demonstrate a fast implementation with an

efficient recognition level. Usually, more than one type of de-

scriptor is required to describe such complex shapes, and then

these features are classified based on machine learning tech-

nique. Graphs and complex networks display useful topologi-

cal features based on the types of connection between their el-

ements. Such features include degree distribution, clustering

coefficient, and hierarchical structure. With the emergence of

graph signal processing, graph spectral domain feature extrac-

tion have been used for 2D shape analysis [16, 17]. Forming

a complex network for 3D shape has been considered in [15].

This paper proposes a new method to represent the 3D

shapes by capturing local variations into the feature represen-

tation. The proposed method begins by extracting a specific

number of pixels to represent the shape followed by generat-

ing a graph connecting these pixels adaptively to capture the

shape structure. The proposed adaptive connectivity is de-

signed to capture the geometric variations of the individual

shapes into the graph structure. After that, we create a signa-

ture based on the graph’s spectral properties to describe each

individual shape. Finally, these features are classified using

the K-nearest neighbour classifier. The main contributions

from this paper are:

• A new method for graph formulation with adaptive con-

nectivity to represent 3D shapes preserving both local

and global characteristics of the shape.

• The proposal of a new set of graph spectral features

based on the node distribution of the adaptive graph for

3D shape representation.

The rest of the paper is organised as follows: The proposed

method is presented in Section 2, followed by the perfor-

mance evaluations is Section 3 and the conclusions in Sec-

tion 4.

2. THE PROPOSED METHOD

2.1. Point cloud representation

3D object S contains of n points cloud, with coordinates,

(xi, yi, zi), i = 0, ..., n − 1. Usually, each object contains a

large number of pixels on the 3D Cartesian plane. Therefore,

we use Growing Neural Gas (GNG) to reduce the complexity



Fig. 1. 3D shape representation using Growing Neural Gas.

and to get the same number of pixels for each object (normal-

isation). The input data of the GNG are the coordinates of

a 3D point cloud. Based on the Euclidean distance between

pixels, we train the GNG and it grows gradually inside the

shape’s region using a pre-determined number of pixels (N).
At the end of the training process, the GNG should satisfac-

tory cover the shape regions as can be seen in Fig. 1. The

detailed description of GNG can be found in [18].

2.2. Graph preliminaries

We can now represent the nodes on the surface as an undi-

rected graph, G = {V, E ,A}, where V is the set of N vertices,

E is the set of edges and A is the adjacency matrix with edge

weights. We consider E as the Euclidean distance between

nodes because it is invariable to rotation and translational op-

erations. We define the weight, Ai,j corresponding to Ei,j
connecting between vertices i and j as follows:

Ai,j =

{

E(i,j), if nodes i and j are connected,

0, otherwise.
(1)

We also define the signal r : V → R, where ith component

represents the Euclidean distance from the centre (0,0,0) to

the vertex i in V as follows:

ri =
√

x2
i + y2i + z2i . (2)

The graph Laplacian matrix, L = D−A, is then calculated,

where D is the diagonal matrix of vertex degrees, whose di-

agonal components are computed as D(i,i) =
∑N−1

j=0 A(i,j).

Since, L is symmetrically positive, there exists a real unitary

matrix, U, that diagonalizes L, such that Ut
LU = Λ =

diag{λℓ} is a non-negative diagonal matrix, leading to an

eigenvalue decomposition of L matrix as follows:

L = U
tΛU =

N−1
∑

ℓ=0

λℓuℓu
t
ℓ, (3)

where uℓ, the column vectors of U, are a set of orthonormal

eigenvectors of L with corresponding eigenvalues, 0 = λ0 <

λ1 ≤ λ2... ≤ λN−1 = λmax [19].
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Fig. 2. Dynamic connectivity over the same object (Top row)

using, A: t1 = 5, B: t2 = 10, C: t3 = 15 and its node distri-

bution (Bottom row).

2.3. Graph connectivity

The type of connectivity has a direct effect on the graph spec-

tral basis. To design the optimal graph connectivity, we sug-

gest using conditional connectivity; where nodes are linked

together if, and only if, they satisfy a certain threshold (t).

The generated graph based-threshold G(ti) represents a tem-

porary transition state of the object with certain properties as-

sociated with the threshold value. Fig. 2 illustrates the result

of applying different threshold values over the same object.

We consider t as the smallest distance that keeps all nodes

connected as one group, which means that there are no sep-

arated nodes. The main difference between each G(ti) is the

connectivity degree of each vertex, which gives a general un-

derstanding of the nature of the surface.

To set the optimal threshold (T ) a dataset, in our previous

work on 2D shape recognition [17], we demonstrated that t

is the minimum acceptable solution. Similarly, in [15], an

experimentally determined fixed threshold for all shapes in

each dataset was considered. In the present paper, we propose

using individual t for each shape depending on the surface

details as follows:

Ts = t+ δ, (4)

where δ is the optimal value that can be added to give the op-

timal possible distinction to all the objects in the dataset. This

means that our proposed condition results from local details

of each individual samples (t), and the discriminatory value

(δ), which is determined based on all objects in the dataset as

shown in Section 2.4.
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Fig. 3. Dynamic evaluations, A: number of connected pixels

for one sample, B: combining all samples, C: matrix repre-

sentation of the connectivity, D: the variance (σ) of each node

distribution (Φ).

Algorithm 1 Computing T

1: for i = 0 : (m− 1) do

2: P̂i ← Shape representation as (xi,yi,zi).

3: t← Minimum distance to link all pixels as a one group.

4: for δ = 0 : (N − 1) do

5: Φδ ← Node distribution at (t+ δ).

6: Φ̂δ ← Normalising ( Φδ

max(Φδ)
) .

7: σ2
δ ← Compute the variance of Φ̂δ .

8: end

9: Ti ←Max(σ2).

10: end

2.4. The optimal threshold (T ).

In this study, we define the optimal threshold (T ) as the value

that gives the maximum variation of the nodes distribution.

Therefore, for each shape Si with N nodes in the dataset that

contains m shapes, we compute the variance of the node dis-

tribution at t. Then, we increase δ from 0→ N−1 to find the

node distribution corresponding to the maximum variance, as

shown in Algorithm 1 and Fig. 3 to get T as follows:

T = argmax
δ

(σ2
δ ). (5)

2.5. 3D shapes feature representation

In order to classify 3D objects, it is important to generate

a vector feature that describes the geometric details of the

shapes surface. To achieve such a task, we explore node do-

main and spectral domain. Also, this study takes into consid-

eration the global and local details as shown:

1. Local features (FL) are presented by number of con-

nected elements at each pixel, Φi.

FL = Φ̂i, i = 0, . . . , N − 1. (6)

2. Global shape features (FG) are presented by scaling the

graph eigenvalues by the distance (⊖). This combi-

nation results in highly discriminating features of the

global shape.

FG = riλi, i = 0, . . . , N − 1. (7)

3. Also, other statistics of the node distribution, are used

for detection. These information are invariant to the

rotation such as:

(a) F(3,1) = the mean.

(b) F(3,2) = the variance.

(c) F(3,3) = the entropy as in Eq. (8),

F(3,3) =

n−1
∑

0

Φ̂i log 2

(

1

Φ̂i

)

. (8)

(d) F(3,4)= the summation of square node distribution

(Eq. (9)).

F(3,4) =

√

√

√

√

n−1
∑

0

Φ̂i

2

. (9)

The total length of the features is (2N + 4). In the final

step, these features are concatenated and categorised using

k-Nearest Neighbour classifier (KNN). This study uses the

KNN classifier because it is a very simple classification algo-

rithm based on the nearest model with fast prediction rate.

3. PERFORMANCE EVALUATION

The proposed method has been tested against a variety of

shapes using artificial 3D shape dataset [20]. This dataset

provides 19 classes× 20 samples per class = 380 shapes

in total. The shapes in each class were presented in differ-

ent orientations, scales and articulation, making it one of the

most challenging datasets. These classes include: Human,

Cup, Glasses, Airplane, Ant, Chair, Octopus, Table, Teddy

bear, Hand, Plier, Fish, Bird, Mech, Bust, Armadillo, Bear-

ing, Vase, and Four Leg respectively.

Initially, we reduce the number of pixels for all shapes

into N = 200 using GNG technique as shown previously. Af-

ter that, we normalised the distance of each shape in such a

way that the maximum Euclidean distance between nodes =1

to avoid scaling variations. Graphs are then generated using

a certain threshold Ti associated with individual shape as il-

lustrated in Eq. (4). No attempt was made to determine the



Fig. 4. The confusion matrix of the proposed method using Principle Benchmark dataset of 3D shapes [20].
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Fig. 5. Our proposed threshold value (T ) based on the highest

variation. The vertical lines separate different classes in the

dataset.

association threshold for each shape in [15]. This work how-

ever computes a threshold for each shape, which provides a

distinguishing local detail for individual shape and as a re-

sult, this leads to better performance. Fig. 5 shows how these

threshold values change among different shapes. Also, we

can see that T is well correlated in most classes and differs in

other, giving an impression of system performance.

A set of features is extracted to represent each shape, S,

using their associated TS . Then, the KNN classifier with k =
1 was used to recognise shapes. Using a 10-folds cross vali-

dation technique to train and test all the dataset, our method

achieves a 74.47% level of accuracy, and the confusion ma-

trix is shown in Fig. 4. From the confusion matrix, we can

see that the error samples are highly concentrated in the last

five classes, which are very challenging shapes (E.g., Bear-

ing, Vase). This is mainly because the same object appears

in different poses, and individual classes have different artic-

ulated shapes. However, the proposed global features (i.e.,

FG) capture these shapes in terms of global details.

The experiment was implemented using Matlab R2018a

Table 1. Comparison with the different shape descriptors

methods.
Method Classification rate (%)

3D shape histogram [21] 43.42

Shape distribution [22] 67.37

Complex network [15] 70.79

The proposed method 74.47

on a PC with Intel processor, CPU@3.6GHz and RAM 16GB.

After we reduced the complexity of shapes using GNG, the

average time for training and testing 380 samples was 6.3 sec-

onds, which is fast for such a large amount of data and the

average time for testing a new one sample is 12 milliseconds.

To test the robustness of our proposed solution, we com-

pared our method with well-known approaches based on his-

tograms [21], node distribution [22] and complex networks

[15]. Table 1 indicates that our proposed solution offers bet-

ter performance with an increase in accuracy of 4%.

4. CONCLUSIONS

In this paper, we have proposed a new 3D shape recognition

method based on local details. Our approach includes a pro-

posal of new method for graph formulation with adaptive con-

nectivity to represent 3D shapes. The adaptive connectivity

preserves both local and global characteristics of the shape.

This is followed by a new set of graph spectral and node do-

main features based on the node distribution of the adaptive

graph for 3D shape representation. The performance evalua-

tion based on one of the most challenging 3D dataset showed

that the proposed method exceeded the existing node distri-

bution methods by 4%.
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