
Distributed Deep Learning Strategies For Automatic Speech Recognition

Wei Zhang, Xiaodong Cui, Ulrich Finkler, Brian Kingsbury, George Saon, David Kung, Michael
Picheny

IBM Research
{weiz,cuix,ufinkler,bedk,gsaon,kung,picheny}@us.ibm.com

Abstract
In this paper, we propose and investigate a variety of distributed
deep learning strategies for automatic speech recognition (ASR)
and evaluate them with a state-of-the-art Long short-term mem-
ory (LSTM) acoustic model on the 2000-hour Switchboard
(SWB2000), which is one of the most widely used datasets for
ASR performance benchmark. We first investigate what are
the proper hyper-parameters (e.g., learning rate) to enable the
training with sufficiently large batch size without impairing the
model accuracy. We then implement various distributed strate-
gies, including Synchronous (SYNC) , Asynchronous Decen-
tralized Parallel SGD (ADPSGD) and the hybrid of the two HY-
BRID, to study their runtime/accuracy trade-off. We show that
we can train the LSTM model using ADPSGD in 14 hours with
16 NVIDIA P100 GPUs to reach a 7.6% WER on the Hub5-
2000 Switchboard (SWB) test set and a 13.1% WER on the
CallHome (CH) test set. Furthermore, we can train the model
using HYBRID in 11.5 hours with 32 NVIDIA V100 GPUs
without loss in accuracy.

Index Terms— automatic speech recognition, LSTM, deep
learning, parallel computing, switchboard.

1. Introduction
Neural networks with deep architectures have been the domi-
nant acoustic modeling approach for automatic speech recog-
nition (ASR) in recent years. They have yielded state-of-the-
art performance as compared to previous technologies based on
hidden Markov models (HMMs) and Gaussian mixtures [1]. In
some tasks, Deep Learning (DL) has achieved near human-level
ASR performance [2, 3]. It is commonly agreed that the suc-
cess of DL for ASR relies on the availability of large amount of
training data and high-performance computing. Therefore, dis-
tributed DL is not only preferred but also necessary in DL ASR
to guarantee fast turnaround time for model training.

Unlike the widely-studied computer vision tasks, such as
ImageNet [4, 5, 6, 7, 8], few studies have been published regard-
ing how to accelerate distributed training for ASR tasks on large
public dataset (e.g., SWB2000) with the exception of [9, 10].
Compared to computer vision tasks, such as ImageNet, ASR
tasks have very distinct behaviors in terms of distributed com-
puting: (1) The state-of-the-art acoustic models conventionally
can only be trained with relatively small batch size (e.g. 256)
[2], unlike ImageNet where a ResNet model can be trained with
a batch size of 8192 or larger [4, 6, 7]. (2) Computation/com-
munication ratio is low in ASR tasks. In Section 3.1, we demon-
strate that SWB2000 with a state-of-the-art LSTM is five times
more challenging to scale out than a ResNet for ImageNet.
Therefore, we need to revisit distributed training strategies other
than the standard synchronous SGD training for acceleration.
In this paper, we attempt to address the abovementioned two
issues by (1) increasing the batch size for a high-performance

(a) Parameter Server (b) Decentralized Architecture

Fig. 1: A centralized distributed learning architecture and a
decentralized distributed learning architecture

LSTM model without impairing model accuracy (2) using the
Asynchronous Decentralized Parallel SGD (ADPSGD) [11] ap-
proach to reduce the communication cost and remove runtime
bottlenecks.

2. background
A neural network training algorithm seeks to find a set of pa-
rameters θ∗ that minimizes the discrepancy between the net-
work output Ỹ and the ground truth Y . This is usually accom-
plished by defining a differentiable cost function C(Ŷ , Y) and
iteratively updating each of the model parameters using some
variant of the gradient descent algorithm:

Em =
1

m

∑m

s=1
C
(
Ŷs, Ys

)
, (1a)

∇θ(t) = (∂Em/∂θ) (t), (1b)
θ(t+ 1) = θ(t)− α(t)∇θ(t) (1c)

where θ(t) represents the model parameter at iteration t, α is
the step size (also known as the learning rate), and m is the
batch size.

Distributed DL systems, the de facto approach to training
large DL tasks, typically adopt a Parameter Server (PS) [12] ar-
chitecture. Figure 1(a) depicts a PS architecture in which each
learner calculates gradients and transfers them to the PS. The
PS then updates the weights and sends them back to the learn-
ers. The timestamp, a scalar counter, of the PS’s weights is
increased by 1 (i.e. from t to t + 1) for each update. Stale-
ness[13] is defined as the discrepancy between the timestamp
of learners’ weights which are used to calculate gradients, and
the timestamp of the PS’s weights. To achieve convergence
that is matching to the single learner system, Synchronous SGD
(SSGD) is often used. In SSGD, the PS weight update rule is
given in Equation (2)1: each learner calculates gradients and re-
ceives updated weights in lockstep with the others. The weights
used to calculate the gradients are always the same as the one
on the PS, thus staleness is 0.

∇θ(t) =
1

λ

∑λ

i=1
∇θLi

, Li ∈ L1, ..., Lλ

θ(t+ 1) = θ(t)− α∇θ(t)
(2)

1Throughout this paper, we use λ to denote the number of learners.

ar
X

iv
:1

90
4.

04
95

6v
1

 [
cs

.S
D

]
 1

0
A

pr
 2

01
9

The summation operation in Equation (2) is communicative
and associative; this is known as the “Reduce” operation in the
High Performance Computing field. All-Reduction is the opera-
tion that reduces (e.g., sums) all the elements and broadcasts the
reduction results to each participant. When the message to be
“AllReduced” is large, as in the DL case, the optimal algorithm
maximizes the communication bandwidth utilization by break-
ing a large message to chunks and pipe-lining the reduction op-
eration with message transferring in a ring topology[14]. Such
an algorithm can finish the AllReduce operation in 2×M/Band-
width time, where M is the size of the message, regardless the
number of participants. Many such implementations exist, most
notably[15, 16, 5].

One key drawback of SSGD is that one slow learner can
slowdown the entire training which is known as the straggler
problem[17] in distributed computing. To avoid this problem,
practitioners proposed Asynchronous SGD (ASGD) which al-
lows each learner to calculate gradients and asynchronously
push/pull the gradients/weights to/from PS. The weight update
rule in ASGD is given in Equation (3):

∇θ(t) = ∇θLi
, Li ∈ L1, ..., Lλ

θ(t+ 1) = θ(t)− α∇θ(t)
(3)

Staleness in ASGD is proportional to the number of learners
in the system[13, 12] and can severely harm convergence[18,
19]. To achieve the best model accuracy, most distributed deep
learning tasks adopt SSGD only[10, 4, 20, 21].

To avoid the straggler problem and maintain compet-
itive model accuracy, decentralized distributed computing
algorithm[22] is proposed, in both synchronous form Decen-
tralized Parallel SGD (DPSGD)[23] and in asynchronous form
Asynchronous Decentralized Parallel SGD (ADPSGD)[11].
The architecture of a decentralized SGD system is depicted in
Figure 1(b), where each learner i calculates the gradients, up-
dates its weights, and averages its weights with its neighbor j
in a ring topology. DPSGD/ADPSGD weights update rule is
defined in Equation (4).

θ(t)′Li
= θ(t)Li

− α∇θ(t)Li

θ(t+ 1)Li
= (θ(t)′Li

+ θ(t)′Lj
)/2, Li, Lj ∈ L1, ..., Lλ

(4)

In DPSGD, assuming the pair-wise weight averaging can be
executed multiple times after each gradient calculation, all
the learners will reach the same weights, thus the staleness
can be zero. In ADPSGD, since computation is overlapped
with communication, the staleness is 1 at best. ADPSGD has
shown excellent runtime and convergence performance on com-
puter vision tasks with CNN type of models (e.g, ResNet and
VGG)[11]. In this paper, we demonstrate that ADPSGD also
achieves excellent runtime and convergence performance on the
SWB2000 speech recognition task with an LSTM model.

3. Design and Implementation
We describe how to increase the batch size to enable efficient
distributed computing for SWB2000-LSTM in Section 3.1. We
then describe the design and implementation for different dis-
tributed learning strategies in Section 3.2.

3.1. Increase Batch Size

A sufficiently large batch size is necessary for enabling effi-
cient distributed DL for two reasons: (1) The larger the batch,
the more learners that can be used. (2) Gradient computation
is more efficient with a larger batch size. In Figure 2a, blue
bars show the computation time per epoch under different batch

32 64 128 256 512 1024
batchsize

0

2.5

5

7.5

10

12.5

15

17.5 time(hr)
bandwidth(GB/s) (right)

0

1

2

3

4

5

(a) Computation time (hr) per
epoch on one P100 GPU and
minimum communication band-
width requirement (GB/s) under
different batch size per learner,
SWB2000-LSTM

1 2 3 4 5 6 7 8 9 10111213141516
epoch

1.4

1.6

1.8

2.0

2.2

2.4

He
ld

-o
ut

 lo
ss

Batchsize 256
Batchsize 2560

(b) Held-out loss w.r.t epoch for
batch size 256 and batch size
2560, SWB2000-LSTM

Fig. 2: Computation time / Communication bandwidth require-
ment and Held-out loss under different batch size, SWB2000-
LSTM

size for the SWB2000-LSTM2 task measured on a P100 GPU.
It takes 8.58 hrs to finish one epoch under batch size 256 as
compared to 18.33 hrs under batch size 32. Furthermore, with a
smaller batch size, more frequent communication is required. In
Figure 2a, orange bars show the minimum bandwidth require-
ment to transfer the gradients so that communication time and
computation time break even. Batch size 32 per learner requires
almost 4X bandwidth (4.98GB/s) as compared with batch size
256 (1.33GB/s). Conventional wisdom on SWB2000-LSTM
task is batch size larger than 256 significantly lowers the model
accuracy[2]. The hyperparameter setup for the batch size 256
configuration is the learning rate is set to be 0.1, momentum is
set as 0.9, and learning rate anneals by 1√

2
every epoch from the

11th epoch. The training finishes in 16 epochs. Inspired by the
work proposed in[4], we are able to increase the batch size from
256 to 2560 without decreasing model accuracy by (1) linearly
warming up the base learning rate from 0.1 to 1 in the first 10
epochs and (2) annealing the learning rate by 1√

2
from the 11th

Epoch. Figure 2b plots the held-loss w.r.t epochs for batch size
256 and batch size 2560;they are indistinguishable by epoch 16.

In the ImageNet-ResNet task, a batch size of 32 takes about
0.18 sec to compute on one P100 GPU, whereas the same batch
size for SWB2000-LSTM task takes only 0.067sec to compute.
Moreover, the ImageNet-ResNet model size is about 100MB,
whereas the SWB2000-LSTM model size is 165MB. The com-
bination of shorter computation time and larger model size
makes SWB2000-LSTM 5x more challenging to parallelize than
the ImageNet-ResNet task.

3.2. System Design

Three distributed SGD algorithms are considered and imple-
mented as follows: Synchronous (SYNC), Asynchronous De-
centralized Parallel SGD (ADPSGD), and the hybrid of these
two algorithms HYBRID. In Figure 3, we sketch our system
APIs integration (in bold-font texts) with the underlying DL
framework. We assume the underlying DL framework can pro-
vide the following functionalities: g=calGrad(W), which calcu-
lates the gradients g based on weights W and W’=apply(W,g),
which applies gradients g to weights W and returns updated

2We describe the details of the LSTM model used in this paper in
Section 4.2

weights W ′.

Fig. 3: Integration of communication protocol with solver.

(a) sync(weights)

g= c a l G r a d (W) ;
w’= app lyGrad (W, g)
W= a l l r e d u c e (W’) / λ

(b) ADPSGD

g= c a l G r a d (W) ;
W= p u l l w e i g h t s () ;
W’= a p p l y (W, g)
push weights (W’) ;

(c) HYBRID

g= c a l G r a d (W) ;
W= p u l l w e i g h t s () ;
W’= a p p l y (W, g)
push weights (W’) ;

SYNC: Summing of the weights and taking their average
after every iteration, as shown in Figure 3a, is equivalent to
applying weights update by using the averaged gradients. We
use the fastest Allreduce implementation available to us (DDL-
Allreduce[5]) to implement the SYNC strategy. As we will
show in Section 5.2, DDL-Allreduce is 1.2X-3X faster than the
open-source MPI Allreduce implementation in OpenMPI[24].

ADPSGD: Figure 4 shows the system architecture of
ADPSGD. Assuming N learners in a system (N is an even
number), we designate learners of odd id i (i ∈ 1, 3, ..., N − 1)
as senders and learners of even id j (j ∈ 2, 4, ..., N) as re-
ceivers. Bipartition of the communication graph guarantees
acyclic communication, thus it is deadlock-free. Each sender
communicates with its left and right neighbor in alternate itera-
tions. Each sender process runs two threads: a main thread and
a communication thread. The main thread calculates the gradi-
ents and applies the weight updates. When a new set of weights
W ′i are generated, the sender signals its communication thread
to sendW ′i to its neighbor learner j, receives learner j’s weights
W ′j , and then updates its weightWi to be the average ofW ′i and
W ′j . Additionally, as required in the proof of [11], the weight
matrix of learners need to be doubly stochastic and symmetric
which implies the weight update on GPU and the weight aver-
aging on the CPU must not interleave so that the receiver has a
consistent view of weights on the sender. We enforce this atom-
icity via a condition variable[25]. Similarly, each receiver j runs
a main thread and a communication thread. In each iteration, a
receiver’s main thread calculates gradients and then updates its
weights in an atomic region. Meanwhile, the receiver’s com-
munication thread waits until the weights are received from its
neighbor i. Then, the communication thread does the following
in an atomic region: (i) sends its weights to its engaging neigh-
bor and updates its weights by averaging its weights with the re-
ceived weights. The atomicity is enforced via a mutex lock[26].
As compared to the implementation in [11], this implementa-
tion updates weights on GPU, which runs faster and no gradient
information needs be extracted from the underlying solver; the
disadvantage of this implementation is that each sending op-
eration is only triggered when new gradients are calculated and
there is no way to exchange weights more frequently even when
the network is free. Also, GPU weight updates need to wait if
the weights are being changed in the communication thread.

HYBRID: Note that the communication threads in
ADPSGD essentially runs an Allreduce over learner i and j. By
replacing the point-to-point message passing with an Allreduce
over all learners, we can leverage the optimized fast Allreduce
implementation and also minimize the weights discrepancy
among different learners. In essence, push weights(W’) sig-

…

Atomic region via
Mutex

Atomic region via
Condition VariableOn GPUOn CPU Data Dependency Control Dependency

Senderi

Wi
’

Snd Wi
’

Wi
’

Wj
’

Rcv Wj
’

…

Wi=(Wi
’ + Wj’)/2Wi

Update

Push

Calc

Pull

Update

Push

Calc

Pull

Wj
’

Wj

Rcv Wi
’

Snd Wj
’

Wi=(Wi’ + Wj’)/2

… …Receiverj
Netw

ork

Fig. 4: System architecture of ADPSGD.

SYNC HYBRID ADPSGD
Comm/Compute Overlap × X X
Straggler avoidance × × X
Staleness 0 1 at best 1

Table 1: Comparison of the runtime and staleness between dif-
ferent algorithms

nals the communication thread to conduct an Allreduce which
runs concurrently with gradients calculation, and pull weights
simply retrieves the Allreduce-d results from the last push and
takes an average. The handshaking between communication
thread and main thread is a fast lock-free implementation[27].
When gradient calculation takes longer time than Allreduce,
this scheme should completely overlap communication with
computation.

Table 1 summarizes the runtime and staleness comparison
between different algorithms.

4. Methodology
4.1. Software and Hardware

PyTorch 0.5.0 is the underlying DL framework. We use the
CUDA 9.2 compiler, the CUDA-aware OpenMPI 3.1.1, and
g++ 4.8.5 compiler to build our communication library, which
connects with PyTorch via a Python-C interface.

We develop and experiment our systems on a production-
run cluster ClusterA, which has 4 servers in total. Each server
is equipped with 14-core Intel Xeon E5-2680 v4 2.40GHz pro-
cessor, 1TB main memory, and 4 P100 GPUs. We also run a 32-
GPU experiment on a 4-server high-GPU-density experimental
cluster ClusterB. Each ClusterB server is equipped with 18-core
Intel Xeon E5-2697 2.3GHz processor, 1TB main memory, and
8 V100 GPUs. Both servers are connected by 100Gbit/s ether-
net. On both servers, GPUs and CPUs are connected via PCIe
Gen3 bus, which has a 16GB/s peak bandwidth in each direc-
tion.

4.2. DL Models and Dataset

The acoustic model is an LSTM with 6 bi-directional layers.
Each layer contains 1,024 cells (512 cells in each direction).
On top of the LSTM layers, there is a linear projection layer
with 256 hidden units followed by a softmax output layer with
32,000 units corresponding to context-dependent HMM states.
The LSTM is unrolled with 21 frames and trained with non-
overlapping feature subsequences of that length. The feature
input is a fusion of FMLLR (40-dim), i-Vector (100-dim), and

1 2 3 4 5 6 7 8 9 10111213141516
epoch

1.4

1.6

1.8

2.0

2.2

2.4

He
ld

-o
ut

 lo
ss

Baseline
SYNC
HYBRID
ADPSGD

(a) Held-out loss comparison
between Baseline, SYNC,
ADPSGD, and HYBRID

0 4 8 12 16
of GPUs

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Linear speedup
SYNC-OpenMPI
SYNC-DDL
HYBRID
ADPSGD

(b) Speed-up comparison be-
tween different strategies

Fig. 5: Convergence/Speed-up comparison, 16 GPUs on Clus-
terA.

logmel with its delta and double delta (40-dim ×3).
The language model (LM) is rebuilt using publicly avail-

able training data, including Switchboard, Fisher, Gigaword,
and Broadcast News, and Conversations. Its vocabulary has
85K words and it has 36M 4-grams.

5. Experimental Results
5.1. Convergence Results

Baseline SYNC HYBRID ADPSGD
SWB 7.5% 7.6% 7.6% 7.6%
CH 13.0% 13.1% 13.1% 13.2%

Table 2: WER comparison between baseline, SYNC, HYBRID,
and ADPSGD after training for 16 epochs.

Our LSTM baseline trained on single GPU (batchsize 256)
gives a WER of 7.5%/13.0% on the Switchboard/CallHome
(SWB/CH) of the NIST Hub5 2000 evaluation test sets after the
Cross-Entropy training, which is a competitive baseline. We
compare this baseline with SYNC, HYBRID, and ADPSGD in
Figure 5a for heldout loss and in Table 2 for WER.
5.2. Runtime Results

Figure 5b plots the speed-up for different algorithms up to
16 GPUs on ClusterA. SYNC-OpenMPI is found to be the
slowest one. It is also found that ADPSGD achieves the best
speed-up (about 11X over 16 GPUs) and finishes the train-
ing in 13.98 hours. ADPSGD did not achieve linear speed-
up because it requires CPU-based weights averaging and GPU
weights update to occur atomically which could be remedied
by offloading GPU weights update to CPU. HYBRID does not
outperform SYNC-DDL significantly even though computation
is long enough to hide the communication. This is because
HYBRID asynchronously calls DDL which relies on NVIDIA
NCCL library[16] for the intra-server reduction. NCCL heavily
competes with training for GPU resources (e.g., stream proces-
sor and memory) when used asynchronously.

Table 3 shows the speed-up measured for each algorithm
when one of the 16 GPUs slows down. ADPSGD is immune to
the straggler problem, whereas the speedup of other algorithms
quickly diminishes. Figure 6 shows a snapshot of the number
of minibatches processed by each GPU in one epoch when half
of ClusterA are shared by other users. ADPSGD automatically
balanced the workload per GPU. SYNC and HYBRID would
enforce each GPU to process the same number of minibatches
in this scenario.

Slowdown of
one GPU

ADPSGD SYNC-DDL/HYBRID
Time/epoch (hr) Speed-up Time/epoch (hr) Speed-up

no slowdown 0.87 10.88 1.09/1.03 8.70/9.26
2X 0.89 10.63 1.67/1.63 5.71/5.83
10X 0.91 10.42 6.24/6.46 1.52/1.47
100X 0.92 10.38 57.73/60.80 0.16/0.16

Table 3: Runtime and speedup when one GPU slows down by
2X-100X, 16 GPUs on ClusterA. ADPSGD is immune to the
straggler problem.

0 2 4 6 8 10 12 14 16
GPU ID

0250
0500
0750
0100

00125
00150
00175
00

o
f m

inib
atc

hes
 pr

oce
sse

d

Fig. 6: When half of ClusterA is shared to run other tasks,
ADPSGD balances the workload for different GPUs for the
SWB2000-LSTM task.

5.3. Experiments on 32 GPUs

We ran an experiment on ClusterB with 32 GPUs and batch
size 80 per GPU3. SYNC-DDL, HYBRID and ADPSGD com-
plete one epoch in 0.75 hrs (16.25x speed-up), 0.71hrs (17.17x
speed-up), and 0.83hrs (14.69x speed-up) respectively. HY-
BRID trains SWB2000 to reach WER 7.6% on SWB and WER
13.1% on CH in 11.5 hrs.

ADPSGD requires more CPU resources than SYNC and
HYBRID to conduct weights averaging and passing weights.
ClusterB has a less favorable CPU/GPU ratio. Furthermore,
8 GPUs share one PCIe bus on ClusterB and ADPSGD satu-
rates the 16GB/s bandwidth quickly. ADPSGD would run sig-
nificantly faster if deployed on clusters with higher CPU/GPU
ratio, higher main memory bandwidth, and/or advanced GPU-
CPU interconnect (e.g., NVLink[28]).

6. Conclusion and Future work
In this paper, we made the following contributions: (1) we
first described the hyper-parameter setup for SWB2000-LSTM
speech recognition task using batch size of 2560, which is a suf-
ficiently large batch size that enables efficient distributed train-
ing. (2) We implemented and compared different distributed
learning algorithms for this task. Our system trains a model to
WER 7.6% on SWB and WER 13.1% on CH in less than 12
hours. To the best of our knowledge, this is the fastest system
that trains these tasks to this level of accuracy. Our future work
includes: (1) Implement wait-free ADPSGD as proposed in [11]
to further improve convergence and runtime. (2) Experiment
with hardware with better memory bandwidth, CPU/GPU ra-
tio, and CPU-GPU inter-connect. (3) Experiment with different
types of speech recognition workloads. (4) Explore other meth-
ods to increase batch size and/or use mixed-precision training
as in [6, 7].

7. Related Work
Distributed DL have been applied to speech recognition[10,
29], computer vision[4], language modeling[20], and machine
translation[21] tasks. To reduce the cost of communication,

3It takes 195 hours to finish training SWB2000 task on a V100 GPU,
with a batchsize 80.

researchers have proposed gradient quantization[9, 30] and
gradient compression[31, 8]. All these works adopt a syn-
chronous training method which would become unacceptably
slow in a resource-sharing or Cloud environment[32]. Asyn-
chronous SGD, based on the parameter-server architecture, is
known to have inferior performance and should be avoided
when possible[18, 4, 10, 19]. This work is the first that applies
Asynchronous Decentralized Parallel SGD (ADPSGD), which
has the theoretical guarantee to converge at the same rate as
SGD[11], to the challenging SWB2000-LSTM task to achieve
state-of-the-art model accuracy in a record time.

8. References
[1] G Hinton, L Deng, D Yu, G Dahl, A Mohamed, N Jaitly, A Se-

nior, V Vanhoucke, P Nguyen, T. N Sainath, and B Kingsbury,
“Deep neural networks for acoustic modeling in speech recogni-
tion,” IEEE Signal Processing Maganize, pp. 82–97, November
2012.

[2] G Saon, G Kurata, T Sercu, K Audhkhasi, S Thomas, D Dimi-
triadis, X Cui, B Ramabhadran, M Picheny, L.-L Lim, B Roomi,
and P Hall, “English conversational telephone speech recognition
by humans and machines,” in Interspeech, 2017.

[3] W Xiong, J Droppo, X Huang, F Seide, M. L Seltzer, A Stolcke,
D Yu, and G Zweig, “Toward human parity in conversational
speech recognition,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 12, pp. 2410–2423, Dec
2017.

[4] P Goyal, P Dollár, R. B Girshick, P Noordhuis, L Wesolowski,
A Kyrola, A Tulloch, Y Jia, and K He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677,
2017.

[5] M Cho, U Finkler, S Kumar, D. S Kung, V Saxena, and D Sreed-
har, “Powerai DDL,” CoRR, vol. abs/1708.02188, 2017.

[6] Y You, I Gitman, and B Ginsburg, “Scaling SGD batch size to
32k for imagenet training,” CoRR, vol. abs/1708.03888, 2017.

[7] X Jia, S Song, W He, Y Wang, H Rong, F Zhou, L Xie, Z Guo,
Y Yang, L Yu, T Chen, G Hu, S Shi, and X Chu, “Highly scal-
able deep learning training system with mixed-precision: Training
imagenet in four minutes,” CoRR, vol. abs/1807.11205, 2018.

[8] W Wen, C Xu, F Yan, C Wu, Y Wang, Y Chen, and H Li, “Tern-
grad: Ternary gradients to reduce communication in distributed
deep learning,” in NIPS’2017, pp. 1509–1519. Curran Associates,
Inc., 2017.

[9] F Seide, H Fu, J Droppo, G Li, and D Yu, “1-bit stochastic gradi-
ent descent and application to data-parallel distributed training of
speech dnns,” in Interspeech 2014, September 2014.

[10] D Amodei(et.al.), “Deep speech 2 : End-to-end speech recogni-
tion in english and mandarin,” in ICML’16. 2016, pp. 173–182,
PMLR.

[11] X Lian, W Zhang, C Zhang, and J Liu, “Asynchronous decentral-
ized parallel stochastic gradient descent,” in ICML, 2018.

[12] J Dean, G. S Corrado, R Monga, K Chen, M Devin, Q. V Le,
M. Z Mao, M Ranzato, A Senior, P Tucker, K Yang, and A. Y Ng,
“Large scale distributed deep networks,” in NIPS, 2012.

[13] W Zhang, S Gupta, X Lian, and J Liu, “Staleness-aware async-sgd
for distributed deep learning,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, 2016, pp. 2350–2356.

[14] P Patarasuk and X Yuan, “Bandwidth optimal all-reduce algo-
rithms for clusters of workstations,” J. Parallel Distrib. Comput.,
vol. 69, pp. 117–124, 2009.

[15] Baidu, Effectively Scaling Deep Learning Frameworks,
Available at https://github.com/baidu-research/
baidu-allreduce.

[16] Nvidia, NCCL: Optimized primitives for collective multi-
GPU communication, Available at https://github.com/
NVIDIA/nccl.

[17] J Dean and S Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[18] J Chen, R Monga, S Bengio, and R Jozefowicz, “Revisiting dis-
tributed synchronous sgd,” in International Conference on Learn-
ing Representations Workshop Track, 2016.

[19] W Zhang, S Gupta, and F Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in IEEE
International Conference on Data Mining, 2016.

[20] R Puri, R Kirby, N Yakovenko, and B Catanzaro, “Large scale
language modeling: Converging on 40gb of text in four hours,”
CoRR, vol. abs/1808.01371, 2018.

[21] M Ott, S Edunov, D Grangier, and M Auli, “Scaling neural ma-
chine translation,” EMNLP 2018 THIRD CONFERENCE ON
MACHINE TRANSLATION, vol. abs/1806.00187, 2018.

[22] R Nair and S Gupta, “Wildfire: Approximate synchronization of
parameters in distributed deep learning,” IBM Journal of Research
and Development, vol. 61, no. 4/5, pp. 7:1–7:9, July 2017.

[23] X Lian, C Zhang, H Zhang, C.-J Hsieh, W Zhang, and J Liu, “Can
decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,”
in NIPS, 2017.

[24] E Gabriel(et.al.), “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings, 11th European
PVM/MPI Users’ Group Meeting, 2004.

[25] B. W Lampson and D. D Redell, “Experience with processes and
monitors in mesa,” Commun. ACM, vol. 23, no. 2, pp. 105–117,
Feb. 1980.

[26] R. H Arpaci-Dusseau and A. C Arpaci-Dusseau, Operating Sys-
tems: Three Easy Pieces, Arpaci-Dusseau Books, 0.91 edition,
May 2015.

[27] U Finkler, H Franke, and D. S Kung, “DYCE: A resilient shared
memory paradigm for heterogenous distributed systems without
memory coherence,” in Proceedings of the Computing Frontiers
Conference, CF’17, Siena, Italy, May 15-17, 2017, 2017, pp. 17–
26.

[28] Nvidia, NVLINK FABRIC, Available at https://www.
nvidia.com/en-us/data-center/nvlink/.

[29] K Chen and Q Huo, “Scalable training of deep learning machines
by incremental block training with intra-block parallel optimiza-
tion and blockwise model-update filtering,” in ICASSP’2016,
March 2016.

[30] N Wang, J Choi, D Brand, C.-Y Chen, and K Gopalakrishnan,
“Training deep neural networks with 8-bit floating point num-
bers,” in NIPS, 2018.

[31] C Chen, J Choi, D Brand, A Agrawal, W Zhang, and K Gopalakr-
ishnan, “Adacomp : Adaptive residual gradient compression for
data-parallel distributed training,” AAAI, 2017.

[32] W Zhang, M Feng, Y Zheng, Y Ren, Y Wang, J Liu, P Liu, B Xi-
ang, L Zhang, B Zhou, and F Wang, “Gadei: On scale-up training
as a service for deep learning,” The IEEE International Confer-
ence on Data Mining series(ICDM’2017), 2017.

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

	1 Introduction
	2 background
	3 Design and Implementation
	3.1 Increase Batch Size
	3.2 System Design

	4 Methodology
	4.1 Software and Hardware
	4.2 DL Models and Dataset

	5 Experimental Results
	5.1 Convergence Results
	5.2 Runtime Results
	5.3 Experiments on 32 GPUs

	6 Conclusion and Future work
	7 Related Work
	8 References

