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ABSTRACT

Despite the increasing research interest in end-to-end learning sys-
tems for speech emotion recognition, conventional systems either
suffer from the overfitting due in part to the limited training data, or
do not explicitly consider the different contributions of automatically
learnt representations for a specific task. In this contribution, we
propose a novel end-to-end framework which is enhanced by learn-
ing other auxiliary tasks and an attention mechanism. That is, we
jointly train an end-to-end network with several different but related
emotion prediction tasks, i. e., arousal, valence, and dominance pre-
dictions, to extract more robust representations shared among var-
ious tasks than traditional systems with the hope that it is able to
relieve the overfitting problem. Meanwhile, an attention layer is im-
plemented on top of the layers for each task, with the aim to cap-
ture the contribution distribution of different segment parts for each
individual task. To evaluate the effectiveness of the proposed sys-
tem, we conducted a set of experiments on the widely used database
IEMOCAP. The empirical results show that the proposed systems
significantly outperform corresponding baseline systems.

Index Terms— Speech emotion prediction, end-to-end, atten-
tion mechanism, multi-task learning

1. INTRODUCTION

Automatic speech emotion prediction endows machines with the ca-
pability of natural and empathic communication with humans, which
is considered to be essential to sustain long-term human—machine in-
teractions. In spite of remarkable advances over the past decades [ 1],
the extraction of representative features associated with emotions re-
mains an open challenge. The conventional approaches normally
extract a variety of acoustic descriptors, such as pitch and energy,
on the frame level in the first place. Then, mostly they derive the
super-segmental features via applying some mathematical function-
als (e. g., mean and maximum) [2}/3]], or counting the normalised oc-
currence frequency of certain frame-level acoustic feature units [4].

However, these approaches have several disadvantages. All
these approaches largely require acoustic experts and psychologists
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to manually design the features. Only the feature attributes that
explicitly showed high correlation with emotion, normally through
extensive and carefully prepared experiments, will be selected [2]],
which is quite time-consuming and exhausting. Moreover, the
effectiveness of selected features still heavily depends on the im-
plemented pattern recognition model [2], resulting in their lower
generality. In this regard, end-to-end learning has emerged as a
promising alternative [SH8[. It aims to automatically explore the
most salient representations related to the task of interest by using
neural networks to jointly train the representation extraction process
and the pattern recognition process, wiping away the brute-force
feature designing procedure.

Since the inception [9]], a number of end-to-end learning frame-
works have been quickly and widely applied to various speech-
related tasks, for example, speech recognition [10}|11]], speaker
recognition [[12]], and speech synthesiser [[13|]. As to speech emotion
prediction, the first end-to-end work was shown in [5], where the
authors intended to extract implicit representations directly from
digital raw signals by using one-dimensional Convolutional Neural
Networks (CNNs) followed by Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs) for learning a sequential pat-
tern. Due to its great success, this end-to-end framework has been
extended to deal with other modalities for emotion recognition,
such as video and electroencephalogram signals [6}|8]. Likewise,
other similar end-to-end frameworks were further proposed and in-
vestigated for speech emotion prediction. For example, in [§]], the
conventional CNNs were replaced by time-delay neural networks
whereas the LSTM-RNNs were kept following behind.

Nevertheless, these proposed frameworks easily suffer from
overfitting [5], leading to severe performance degradation when the
data mismatch increases between the training and evaluation phases.
This is because of not only the limited size of training data, but
also further concerns, such as the task-specific training [[14]. In
this regard, in this paper, we propose to integrate multi-task learn-
ing (MTL) into the end-to-end framework, which intends to jointly
train several different, but related tasks simultaneously. By doing
this, it is assumed that the more tasks are learnt simultaneously, the
more common representations shared by all of the tasks and the less
chance of overfitting on the original task will be gained [|15].

Moreover, when modelling the automated learnt representative
sequence, the representations at each time point are normally equally
considered [5,/6]. This process largely ignores the different impor-
tance of the parts within one unit of analysis with respect to different



emotions. For instance, the work done in [16] has shown that the
short silence periods within an utterance often have little relevance
with emotions. To this end, we further propose to implement an at-
tention mechanism to the end-to-end frameworks, hoping that it can
automatically learn the most interesting parts of an utterance con-
taining strong characteristics relating to the given emotions.

Therefore, the main contribution of this paper pertains to the
proposal of a novel end-to-end framework, which is augmented with
an attention mechanism and jointly trained with multiple auxiliary
tasks, for speech emotion prediction. To the best of our knowledge,
this is the first time to investigate such an end-to-end framework in
the context of speech processing.

2. RELATED WORK

For speech emotion prediction, MTL has been frequently utilised.
Eyben et al. [[17] firstly proposed to jointly train five different emo-
tional dimensions for continuous emotion recognition. The exper-
imental results have clearly indicated that the MTL model remark-
ably outperforms single-task-based models. Following this work,
Han et al. [[18]] combined the emotion prediction with an annotation
uncertainty as joint tasks to be learnt together. Xia and Liu [19]
suggested incorporating the losses from both the categorical and the
dimensional emotion recognition to optimise the neural networks.
Zhang et al. [20] investigated MTL in a cross-corpus scenario, where
many auxiliary tasks, such as corpus, domain, and gender distinc-
tions, were considered to be optimised along with emotion recogni-
tion. Other similar works have also been done in [21]. However,
most of these studies have focused on the usage of hand-crafted fea-
tures.

As to the attention mechanism, Mirsamadi [16] firstly integrated
an attention layer within Deep Neural Networks (DNNs), resulting in
a significant performance improvement for speech emotion predic-
tion. Similarly, Zhao et al. [22]] implemented an attention layer right
after the RNNSs to extract the most interesting acoustic parts in the
continuum. Apart from the RNNs and DNNGs, the attention layer was
also integrated with CNNs [23}24]. All these works, nevertheless,
were conducted under the usage of traditional hand-crafted features,
and have not explicitly investigated the differences of attention in an
MTL framework.

3. ATTENTION-AUGMENTED END-TO-END
MULTI-TASK LEARNING

Figure [T] illustrates the proposed end-to-end framework for speech
emotion prediction, which can be considered as an extension of a
basic end-to-end system, augmented with attention and MTL strate-
gies. In the following subsections, we comprehensively describe the
framework.

3.1. Single-Task End-to-End Framework

Despite several existing end-to-end frameworks for speech emotion
recognition, we retained the basic network structure in our previous
work [5,/6]]. This is due to its effectiveness being well demonstrated
in continuous emotion recognition, and its widespread usage in many
other computational paralinguistic tasks [25].

The basic single-task-based end-to-end system generally con-
sists of a feature extraction modelling and a sequence modelling.
More specifically, the feature extraction modelling mainly consists
of two one-dimensional convolutional layers each followed by an
element-wise rectified linear non-linearity (ReLU) maz (0, z) and
by additional max pooling layer. The reason behind the usage of
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Fig. 1. The framework of the attention-augmented end-to-end multi-
task learning for speech emotion prediction.

CNNSs mainly lies in their well-known capability of feature extrac-
tion not only in image processing, but also in speech processing [5].
Particularly, one dropout layer is employed to increase the model
generalisation. In contrast to the feature extraction modelling, the se-
quence modelling employs two recurrent layers equipped with Gated
Recurrent Units (GRUs), due to their effectiveness in modelling tem-
poral patterns and less complexity in comparison with LSTMs [26].

Given an utterance in form of raw audio signals s(¢), it is firstly
split into several sequential segments {s1,...,sr} (L indicates the
number of the obtained segments given an utterance) with a sliding
fixed-length window. Then, each segment is successively fed into
the feature extraction modelling ( f.) so that input raw signals of each
segment are transformed into one vector (i. e., representation). That
is, given a segment s;, one obtains

vi = fe(si), ey

which is assumed to well represent the temporal speech patterns.
After that, the extracted representation v; is further successively fed
into the sequence modelling (f;), i.e.,

h; = fr(vi), )

leading to a new output sequence from the last recurrent layer, i. e.,
{hi,h2,...,hr}. Normally, only the last output of the sequence
hy is used and fed into the final softmax layer for emotion predic-
tion.

3.2. Weighted Pooling with Attention

The principle of the attention mechanism originally stemmed from
the characteristic of human perception. That is, humans normally
focus attention selectively on parts of the visual or auditory space to
acquire information when and where it is needed, and combine in-
formation from different fixations over time to build up an internal
representation of the scene [27]]. Nowadays, the attention mecha-
nism has been widely used in image processing and natural language
processing [28]].



By far, a variety of attention mechanisms have been investigated
in machine learning. According to whether the calculation of at-
tention requires to access positions across sequences, they can be
generally categorised into inter-attention and intra-attention mech-
anisms. Intra-attention, also known as self-attention, is often used
to compute a representation of a sequence by leveraging different
importance of the parts in a sequence. In this contribution, we em-
ployed an intra-attention layer following the last recurrent layer as
illustrated in the top of Fig.

Mathematically, given an output sequence of the last recur-
rent layer {hy,ho,..., hy}, the attention layer tries to deliver an
utterance-level representation for such a sequence with the following

equation
L
r= Z aih;, 3
i=1

where «; stands for the weight of the output h; at the i-th frame.
From this equation, it can be seen that the attention layer can be
considered as a weighted-average pooling layer, in comparison with
the traditional maximum, average, or the last output pooling strate-
gies. Finally, the obtained new representation r is fed into one fully
connected layer for emotion prediction.

Therefore, the calculation of weight «; becomes the central
problem of the attention layer. Specifically, c; is computed by

o — exp(w”h;)
L ep(why)

where w is the learnable parameter vector, and the inner product
between w and h; is interpreted as a score for the contribution of
the frame ¢. Besides, in this equation, a softmax function is applied
leading to the sum of the weight distribution to be a unity.

)

3.3. Joint Training with Auxiliary Tasks

As discussed in Section[T] end-to-end learning frameworks normally
require massive training data, which, however, are largely absent in
the context of emotion recognition, resulting in a severe overfitting
problem. To improve the model generalisation, in this paper we en-
deavour to seek help from other auxiliary tasks through MTL. The
underlying idea is that the model learns more tasks simultaneously
will contribute to more robust learnt representations that capture all
of the tasks [[14].

Figure [T] illustrates the structure of the proposed MTL. From
the technical view of point, MTL is a process of learning multiple
tasks concurrently. Typically, there is one main task and one or more
auxiliary tasks. By attempting to model the auxiliary tasks together
with the main task, the model learns shared information among tasks,
which may be beneficial to learning the main task. In this paper, the
tasks refer to three-dimensional emotions, i. e., arousal, valence, and
dominance predictions.

Mathematically, the objective function in MTL can be formu-
lated as:

M
T(00) = > Wi Lin(X,ym, [0m; 0]) + AR(80),  (5)
m=1

where M denotes the number of tasks and L., (+) represents the loss
function of the task m, which is weighted by w,,. The weights w,
are optimised by a random search. 6. and 0,, represent, respec-
tively, the shared and task-specific model parameters with respect to
the task m, whereas 8y indicates all shared and task-specific network
parameters, and ) is a hyper-parameter that controls the importance

of the regularisation term R(6o) (i.e., L2 in our case). In the net-
work training process, the network is optimised by minimising the
objective function 7 (6o).

4. EXPERIMENTS AND RESULTS

In this section, we implement and evaluate our approach for emotion
classification on an emotion database.

4.1. Selected Database

To validate the proposed paradigm, we used the widely used Inter-
active Emotional dyadic MOtion CAPture (IEMOCAP) database,
which contains approximately 12 hours of audio-visual recordings
from five pairs of experienced actors [29]. For each improvised in-
teraction between two actors, they communicated with each other
in scenarios where specific emotions were elicited. The recordings
were then segmented into utterances and further annotated in all
three-dimensional aspects, i. e., activation, valence, and dominance,
on a five-point scale by at least two different annotators.

For our experiments, only the audio recordings were utilised.
Following the work of [30], we further discretised the five-point
scale into three levels (classes) — low level contains ratings in the
range [1,2], middle level contains ratings in the range (2,4), and high
level contains ratings in the range [4,5] [30]]. We divided the dataset
into three speaker independent partitions, i.e., 6 319 for the train-
ing set (session 1-3), 1811 for the development set (session 4), and
1819 for the test set (session 5). All the recordings were sampled
with 16 kHz.

4.2. Implementation Details

Before feeding the raw speech signal into the network, we applied an
online standardisation to the development and test sets by using the
mean and standard deviation information from the training set. The
raw speech signals were then split into sub-segments with a fixed-
size window of 40 ms at a step size of 10 ms. Given the 16 kHz sam-
pling rate of raw signals, the network input vector is of dimension
640 for each sub-segment. For the first and second convolutional
layers, we used 40 filters with the size of 40, resulting in 40 fea-
ture maps after each layer. For the first max pooling layer, we took
a kernel with the size of two in a zero-padding strategy, leading to
feature maps with a dimension of 320; whereas, for the second max
pooling layer, we used a cross-channel max pooling with the pool
size of 10, yielding to four feature maps with the dimension of 320.
Finally, the obtained feature map is expanded and concatenated as a
long vector with 1280 dimensions, which is the extracted represen-
tation for each sub-segment. To improve the model generalisation,
we set the keep probability of the dropout layer to be 0.9. For the
sequence modelling, we employed 128 nodes per GRU hidden layer.
The training of the proposed framework was conducted using the
Adam optimisation algorithm with a learning rate of 0.0001. Note
that all these network and training hyper-parameters were optimised
on the development.

To evaluate the model performance, we utilised the frequently
used metric Unweighted Average Recall (UAR), i.e., the sum of
classwise recall divided by the number of classes, for emotion recog-
nition.

4.3. Results and Discussion

To compare the performance of the proposed approach with other
traditional speech emotion prediction systems, we conducted two
experiments with hand-engineered acoustic features. That is, we



Table 1. Performance comparison (UAR: unweighted average re-
call) between the proposed attention-augmented end-to-end multi-
task learning system with other baseline systems as well as other
traditional recognition models on the development and the test par-
titions for activation, valence, and dominance predictions. OS:
openSMILE features; SVMs: support vector machines; RNNs: re-
current neural networks; STL: single-task learning; MTL: multi-task
learning; e2e: end-to-end learning; att.: attention. The sign of ‘x’
indicates statistic significance (one-tailed z-test, p < .05) of perfor-
mance improvement of the proposed systems in comparison with the
baseline system (i. e., e2e STL).

UAR [%] arousal valence dominance
methods dev test dev test dev test

OS+SVMs 52.1 50.5 50.5 49.8 39.1 487
OS+RNNs 57.8 53.1 51.8 51.0 564 49.6

e2e STL 453 45.1 60.9  60.1 50.9 51.1
e2e STL+att.  46.5 454 614 607 514 526
e2e MTL 462 440 646 634 523 539
e2e MTL+att.  48.7* 48.5* 66.2* 63.8* 534 516

used our opensource toolkit openSMILE [2] to extract a minimal-
istic expert-knowledge based feature set [31]], which contains 23
Low-Level Descriptors (LLDs). After that, we applied a set of sta-
tistical functionals to the LLDs, leading to 88 acoustic features (i.e.,
eGeMAPS) on the utterance level. As to the classifier, we utilised the
sequence classifier of RNNs to model frame-level features; whereas
utilised the static classifier of Support Vector Machines (SVMs) to
model the utterance-level features. Both systems have been success-
fully and frequently utilised for speech emotion prediction [3}[31].

Table [I] shows the obtained results in terms of UAR from the
proposed attention-augmented end-to-end MTL system, the related
baseline systems, as well as the aforementioned other state-of-the-art
systems. It is noted that the basic end-to-end (e2e) learning systems
refer to the ones without attention and MTL learning strategies (see
Section [3.1), and take the last output from the last recurrent layer
for a final prediction. It can be seen that the e2e systems are com-
petitive to the two state-of-of-the-art systems based on hand-crafted
features for both the valence and dominance predictions but not for
the arousal prediction. This generally confirms our previous find-
ings [54/6].

When integrating the attention strategy into the baseline systems
(i.e., e2e STL), one can note that the system performance is gener-
ally improved on all three prediction tasks. These findings suggest
that the attention mechanism does not only work in the conventional
learning framework with hand-crafted features [3|], but also in the
proposed end-to-end framework. In parallel, when conducting the
MTL strategy into the baseline systems (i. e., e2e STL), similar ob-
servations are made. That is, the end-to-end MTL systems are supe-
rior to the task-specific baseline systems in most cases. This conclu-
sion implies that the MTL method can partially increase the gener-
alisation of the extracted representations, i. €., the information learnt
from other auxiliary tasks can benefit the task of interest, even in an
end-to-end learning framework.

Moreover, the incorporation of attention and MTL strategies
achieves the best performance in five out of six cases. For example,
the obtained results for arousal and valence predictions are achieved
at 48.5 % and 63.8 % UAR, which significantly (one-tailed z-test,
p < .05) outperform the baseline results (i.e., 45.1 % and 60.9 %
UAR) on the test set. This suggests that both attention mechanism
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Fig. 2. Automatically learnt attention distribution for arousal (sec-
ond row from top), valence (third row), and dominance (fourth row)
predictions for two randomly selected audio wave files (first row).

and MTL can work in a complementary way.

To further investigate the effectiveness of the attention mecha-
nism in the proposed end-to-end MTL framework, we illustrate the
learnt attention across different tasks for two audio files in Fig. 2]
Generally speaking, one can observe that the learnt attention weight
distributions remarkably differ each task. That is, the arousal, va-
lence, and dominance prediction tasks learnt their individual higher
attention on the same segment parts, which matches our previous as-
sumption in Section[I] Particularly, one can see that for arousal pre-
diction the learnt attention weights (refer to the second row of Fig.[2)
are highly correlated with the parts with high amplitude. Neverthe-
less, a similar observation is not made for valence prediction (refer
to the third row of Fig. ). In contrast, the parts with low speech
amplitude often contribute more than the parts with high amplitude.
This matches our previous knowledge that the valence prediction has
limited relation to speech amplitude [2]. In addition, from the fourth
row of Fig. 2] it can be seen that dominance prediction lays more
attention on some parts with high amplitude.

5. CONCLUSION

With an end-to-end (e2e) learning framework, we, on the one hand,
took a multi-task learning (MTL) strategy to improve the robustness
of the learnt representations that are shared among several tasks. On
the other hand, we integrated a self-attention layer on top of the lay-
ers for each prediction task, in order to distil more salient represen-
tations on the utterance level for a task of interest.

The experimental results obtained by performing experiments
on the IEMOCAP database have shown that either the MTL-based
or the attention-augmented e2e systems outperform the single-task-
based e2e systems, which suggests the effectiveness of the proposed
e2e learning framework. However, we also find that for arousal the
introduced frameworks are inferior to the baseline systems with the
classic functional-based features. This might be because the hand-
crafted features are somewhat able to better represent the patterns
for arousal due to its simplicity than for other tasks (i. e., valence),
according to our prior knowledge.
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