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ABSTRACT

The computer vision literature shows that randomly
weighted neural networks perform reasonably as feature
extractors. Following this idea, we study how non-trained
(randomly weighted) convolutional neural networks per-
form as feature extractors for (music) audio classification
tasks. We use features extracted from the embeddings of
deep architectures as input to a classifier – with the goal to
compare classification accuracies when using different ran-
domly weighted architectures. By following this method-
ology, we run a comprehensive evaluation of the current
deep architectures for audio classification, and provide ev-
idence that the architectures alone are an important piece
for resolving (music) audio problems using deep neural
networks.

1. MOTIVATION – FROM PREVIOUS WORKS

Some intriguing properties of deep neural networks are pe-
riodically showing up in the scientific literature. Examples
of those are: (i) perceptually non-relevant signal pertur-
bations that dramatically affect the predictions of an im-
age classifier [12, 49]; (ii) although there is no guaran-
tee of converging to a global minima that might general-
ize, image classification models perform well with unseen
data [14, 25]; or (iii) non-trained deep neural networks are
able to perform reasonably well as image feature extrac-
tors [41, 43, 51]. In this work, we exploit one of the above
listed properties (iii) to evaluate how discriminative deep
audio architectures are before training.
Previous works already explored the idea of empirically
studying the qualities of non-trained (randomly weighted)
networks, but mainly in the computer vision field:

· Saxe et al. [43] studied how discriminative are the ar-
chitectures themselves by evaluating the classification per-
formance of SVMs fed with features extracted from non-
trained (random) CNNs. 1 They showed that a surprising
fraction of the performance in deep image classifiers can
be attributed to the architecture alone. Therefore, the key
to good performance lies not only on improving the learn-
ing algorithms but also in searching for the most suitable
architectures. Further, they showed that the (classification)

1 CNNs stands for Convolutional Neural Networks.
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performance delivered by random CNN features is corre-
lated with the results of their end-to-end trained counter-
parts – this result means, in practice, that one can bypass
the time-consuming process of learning for evaluating a
given architecture. We build on top of this result to evalu-
ate current CNN architectures for audio classification.

· Rosenfeld and Tsotsos [41] fixed most of the model’s
weights to be random, and only allowed a small portion
of them to be learned. By following this methodology,
they showed a small decrease in image classification per-
formance when these models were compared to their fully
trained counterparts. Further, the performance of their non
fully-trained models can be summarized as follows:
DenseNet [17] � ResNet [15]> VGG [48] � AlexNet [25]
What matches previous works reporting how these (fully
trained) models perform [15, 17, 48], confirming the per-
formance correlation between randomly weighted models
and their trained counterparts found by Saxe et al. [43]

· Adebayo et al. [1] empirically assessed the local ex-
planations of deep image classifiers to find that randomly
weighted models produce explanations similar to those
produced by models with learned weights. They conclude
that the architectures introduce a strong prior which affects
the learned (and not learned) representations.

· Ulyanov et al. [51] also showed that the structure of a
network (the non-trained architecture) is sufficient to cap-
ture useful features for the tasks of image denoising, super-
resolution and inpainting. They think of any designed ar-
chitecture as a hand-crafted model where prior informa-
tion is embedded in the structure of the network itself.
This way of thinking resonates with the rationale behind
the family of audio models designed considering domain
knowledge (see section 2) – what denotes that in both audio
and image fields it exists the interest of bringing together
the end-to-end learning literature and previous research.

Few related works exist in the audio field – and ev-
ery randomly weighted neural network we found in the
audio literature was a mere baseline [2, 7, 24]. Inspired
by previous computer vision works, we study which au-
dio architectures work the best via evaluating how non-
trained CNNs perform as feature extractors. To this end,
we use the CNNs’ embeddings to construct feature vec-
tors for a classifier – with the goal to compare classifica-
tion performances when different randomly weighted ar-
chitectures are used to extract features. To the best of our
knowledge, this is the first comprehensive evaluation of
randomly weighted CNNs for (music) audio classification.



Figure 1. CNN front-ends for audio classification tasks – with examples of possible configurations for every paradigm.

Extreme learning machines (ELMs) [18, 32, 47] and
echo state networks (ESNs) [19] are also closely related
to our work. In short, ELMs are classification/regression
models 2 that are based on a single-layer feed-forward neu-
ral network with random weights. They work as follows:
first, ELMs randomly project the input into a latent space;
and then, learn how to predict the output via a least-square
fit. More formally, we aim to predict:

Ŷ = W2 σ(W1X),

where W1 is the (randomly weighted) matrix of input-to-
hidden-layer weights, σ is the non-linearity, W2 is the ma-
trix of hidden-to-output-layer weights, and X represents
the input. The training algorithm is as follows: 1) set W1

with random values; 2) estimate W2 via a least-squares fit:

W2 = σ(W1X)+Y

where + denotes the Moore-Penrose inverse. Since no iter-
ative process is required for learning the weights, training
is faster than stochastic gradient descent [18]. Provided
that we process audio signals with randomly weighted
CNNs, ELM-based classifiers are a natural choice for our
study – so that all the pipeline (except the last layer) is
based on random projections that are only constrained by
the structure of the neural network. Although ELMs are
not widely used by the audio community, they have been
used for speech emotion recognition [13, 21], or for music
audio classification [23, 29, 44]. ESNs differ from ELMs
in that their random projections use recurrent connections.
Given that the audio models we aim to study are not recur-
rent, we leave for future work using ESNs – see [16, 45]
for audio applications of ESNs.

2. ARCHITECTURES

In this work we evaluate the most used deep learning archi-
tectures for (music) audio classification. In order to facil-
itate the discussion around these architectures, we divide

2 Support Vector Machines are also classification/regression models.

the deep learning pipeline into two parts: front-end and
back-end, see Figure 2. The front-end is the part that inter-
acts with the input signal in order to map it into a latent-
space, and the back-end predicts the output given the rep-
resentation obtained by the front-end. Note that one can in-
terpret the front-end as a “feature extractor” and the back-
end as a “classifier”. Given that we compare how several
non-trained (random) CNNs perform as feature extractors,
and we will use out-of-the-box classifiers to predict the
classes: this literature review focuses in introducing the
main deep learning front-ends for audio classification.

Figure 2. The deep learning pipeline.

Front-ends — These are generally conformed by CNNs
[6, 9, 38, 39, 53], since these can encode efficient represen-
tations by sharing weights 3 along the signal. Figure 1 de-
picts six different CNN front-end paradigms, which can be
divided into two groups depending on the used input sig-
nal: waveforms [9,27,53] or spectrograms [6,38,39]. Fur-
ther, the design of the filters can be either based on domain
knowledge or not. For example, one leverages domain
knowledge when the frame-level single-shape 4 front-end
for waveforms is designed so that the length of the filter
is set to be the same as the window length in a STFT [9].
Or for a spectrogram front-end, it is used vertical filters
to learn spectral representations [26] or horizontal filters
to learn longer temporal cues [46]. Generally, a single fil-
ter shape is used in the first CNN layer [6, 9, 26, 46], but
some recent work reported performance gains when using
several filter shapes in the first layer [5, 34, 36, 38, 39, 53].
Using many filters promotes a more rich feature extrac-
tion in the first layer, and facilitates leveraging domain
knowledge for designing the filters’ shape. For exam-

3 Which constitute the (eventually learnt) feature representations.
4 Italicized names correspond to the front-end types in Figure 1.



ple: a frame-level many-shapes front-end for waveforms
can be motivated from a multi-resolution time-frequency
transform 5 perspective – with window sizes varying in-
versely with frequency [53]; or since it is known that some
patterns in spectrograms are occurring at different time-
frequency scales, one can intuitively incorporate many ver-
tical and/or horizontal filters to efficiently capture those in
a spectrogram front-end [34, 36, 38, 39]. As seen, using
domain knowledge when designing the models allows to
naturally connect the deep learning literature with previ-
ous relevant signal processing work. On the other hand,
when domain knowledge is not used, it is common to em-
ploy a deep stack of small filters, e.g.: 3×1 in the sample-
level front-end used for waveforms [27, 40, 52], or 3×3
in the small-rectangular filters front-end used for spectro-
grams [6]. These VGG-like 6 models make minimal as-
sumptions over the local stationarities of the signal, so that
any structure can be learnt via hierarchically combining
small-context representations.

3. METHOD

Our goal is to study which CNN front-ends work best via
evaluating how non-trained models perform as feature ex-
tractors. Our evaluation is based on the traditional pipeline
of features extraction + classifier. We use the embed-
dings of non-trained (random) CNNs as features: for every
audio clip, we compute the average of each feature map
(in every layer) and concatenate these values to construct
a feature vector [7]. The baseline feature vector is con-
structed from 20 MFCCs, their ∆s and ∆∆s. We compute
their mean and standard deviation through time, and the
resulting feature vector is of size 120. We set the widely
used MFCCs + SVM setup as baseline. To allow a fair
comparison with the baseline, CNN models have ≈ 120
feature maps – so that the resulting feature vectors have a
similar size as the MFCCs vector. Further, we evaluate an
alternative configuration with more feature maps (≈3500)
to show the potential of this approach. Model’s descrip-
tion omit the number of filters per layer for simplicity –
full implementation details are accessible online. 8

3.1 Features: randomly weighted CNNs

Except for the VGG model that uses ELUs as non-
linearities [6, 8], the rest use ReLUs [10] – and we do not
use batch normalization, see discussion in section 3.4. We
use waveforms and spectrograms as input to our CNNs:

Waveform inputs — are of ≈ 29sec (350,000 samples at
12kHz) and the following architectures are under study:

· Sample-level: is based on a stack of 7 blocks that are
composed by a 1D-CNN layer (filter length: 3, stride: 1)
and a max-pool layer (size: 3, stride: 3) – with the excep-
tion of the input block which has no max-pooling and its
1D-CNN layer has a stride of 3 [27]. Averages to construct
the feature vector are computed after every pooling layer,
except for the first layer that are computed after the CNN.

5 The Constant-Q Transform [3] is an example of such transform.
6 VGG: a computer vision model based on a deep stack of 3×3 filters.

· Frame-level many-shapes: consists of a 1D-CNN
layer with five filter lengths: 512, 256, 128, 64, 32 [53].
Every filter’s stride is of 32 and we use same padding – to
easily concatenate feature maps of the same size. Note that
out of this single 1D-CNN layer, five feature maps (result-
ing of the different filter length convolutions) are concate-
nated. For that reason, every feature map needs to have the
same (temporal) size. Since this model is single-layered
and it might be in clear disadvantage when compared to the
sample-level CNN, we increase its depth via adding three
more 1D-CNN layers (length: 7, stride: 1) – where the last
two layers have residual connections, and the penultimate
layer’s feature map is down-sampled by two (MP x2), see
Figure 3. Averages to construct the feature vector are cal-
culated for each feature map after every 1D-CNN layer.

· Frame-level: consists of a 1D-CNN layer with a filter
of length 512 [9]. Stride is set to be 32 to allow a fair com-
parison with the frame-level many-shapes architecture. As
in frame-level many-shapes, we increase the depth of the
model via adding three more 1D-CNN layers – as in Fig-
ure 3. Averages to construct the feature vector are calcu-
lated for each feature map after every 1D-CNN layer.

Figure 3. Additional layers for the frame-level & frame-
level many-shapes architectures, similar as in [9, 37] –
where MP stands for max pooling.

Spectrogram inputs — are set to be log-mel spectrograms
(spectrograms size: 1376×96 7 , being ≈ 29sec of signal).
Differently from waveform models, spectrogram architec-
tures use no additional layers to deepen single-layered
CNNs because these already deliver a reasonable classi-
fication performance. Unless we state the contrary, every
CNN layer used for processing spectrograms is set to have
stride 1. As for the frame-level many-shapes model, we use
same padding when many filter shapes are used in the same
layer. The following spectrogram models are studied:

· 7×96: consists of a single 1D-CNN layer with filters
of length 7 that convolve through the time axis [9]. As a
result: CNN filters are vertical and of shape 7×96. There-
fore, these filters can encode spectral (timbral) representa-
tions. Averages to construct the feature vector are calcu-
lated for each feature map after the 1D-CNN layer.

· 7×86: consists of a single 2D-CNN layer with verti-
cal filters of shape 7×86 [36, 39]. Since its vertical shape
is smaller than the input (86<96), filters can also convolve
through the frequency axis – what can be seen as “pitch
shifting” the filter. Consequently, 7×86 filters can encode
pitch-invariant timbral representations [36, 39]. Further,
since the resulting activations can carry pitch-related in-
formation, we max-pool the frequency axis to get pitch-
invariant features (max-pool shape: 1×11). Averages to
construct the feature vector are calculated for each feature
map after the max-pool layer.

7 STFT parameters: window size = 512, hop size=256, and fs=12kHz.



· Timbral: consists of a single 2D-CNN layer with
many vertical filters of shapes: 7×86, 3×86, 1×86, 7×38,
3×38, 1×38, see Figure 4 (top) [11, 35, 39]. These filters
can also convolve through the frequency axis and there-
fore, these can encode pitch-invariant representations. Sev-
eral filter shapes are used to efficiently capture different
timbrically relevant time-frequency patterns, e.g.: kick-
drums (can be captured with 7×38 filters representing sub-
band information for a short period of time), or string en-
semble instruments (can be captured with 1×86 filters rep-
resenting spectral patterns spread in the frequency axis).
Further, since the resulting activations can carry pitch-
related information, we max-pool the frequency axis to get
pitch-invariant features (max-pool shapes: 1×11 or 1×59).
Averages to construct the feature vector are calculated for
each feature map after the max-pool layer.

· Temporal: several 1D-CNN filters (of lengths: 165,
128, 64, 32) operate over an energy envelope obtained via
mean-pooling the frequency-axis of the spectrogram, see
Figure 4 (bottom). By computing the energy envelope in
that way, we are considering high and low frequencies to-
gether while minimizing the computations of the model.
Observe that this single-layered 1D-CNN is not operating
over a 2D spectrogram, but over a 1D energy envelope –
therefore no vertical convolutions are performed, only 1D
(temporal) convolutions are computed. As seen, domain
knowledge can also provide guidance to (effectively) mini-
mize the computations of the model. Averages to construct
the feature vector are calculated for each feature map after
the CNN layer.

· Timbral+temporal: combines both timbral and tem-
poral CNNs in a single (but wide) layer, see Figure 4 [37].
Averages to construct the feature vector are calculated in
the same way as for timbral and temporal architectures.

· VGG: is a computer vision model based on a stack of 5
blocks combining 2D-CNN layers (with small rectangular
filters of 3×3) and max-pooling (of shapes: 4×2, 4×3,
5×2, 4×2, 4×4, respectively) [6]. Averages to construct
the feature vector are computed after every pooling layer.

Figure 4. Timbral+temporal architecture. MP: max-pool.

As seen, studied architectures are representative of the au-
dio classification state-of-the-art – introduced in section 2.
For further details about the models under study: the code
is accessible online 8 , and a graphical conceptualization of
the models is available in Figures 1, 3 and 4.

8 https://github.com/jordipons/elmarc

3.2 Classifiers: SVM and ELM
We study how several feature vectors (computed consider-
ing different CNNs) perform for a given set of classifiers:
SVMs and ELMs. We discarded the use of other clas-
sifiers since their performance was not competitive when
compared to those. SVMs and ELMs are hyper-parameter
sensitive, for that reason we perform a grid search:

· SVM hyper-parameters: we consider both linear and
rbf kernels. For the rbf kernel, we set γ to: 2−3, 2−5,
2−7, 2−9, 2−11, 2−13, #features−1; and for every kernel
configuration, we try several C’s (penalty parameter): 0.1,
2, 8, 32. We use scikit-learn’s SVM implementation [33].

· ELM’s main hyper-parameter is the number of hidden
units: 100, 250, 500, 1200, 1800, 2500. We use ReLUs as
non-linearity, and we use a public ELM implementation. 9

3.3 Datasets: music and acoustic events
· GTZAN fault-filtered version [22, 50]. Training songs:

443, validation songs: 197, and test songs: 290 – divided
in 10 classes. We use this dataset to study how randomly
weighted CNNs perform for music genre classification.

· Extended Ballroom [4, 30] – 4,180 songs divided in
13 classes; 10 stratified folds are randomly generated for
cross-validation. We use this dataset to study how ran-
domly weighted CNNs classify rhythm/tempo classes.

· Urban Sound 8K [42] – 8732 acoustic events divided
in 10 classes; 10 folds are already defined by the dataset au-
thors for cross-validation. Since urban sounds are shorter
than 4 seconds and our models accepts ≈ 29sec inputs, the
signal is repeated to create inputs of the same length. We
use this dataset to study how randomly weighted CNNs
perform to classify natural (non-music) sounds.

3.4 Reproducing former results to discuss our method

Choi et al. [7] used random CNN features as baseline for
their work, and found that (in most cases) these random
CNN features perform better than MFCCs. Motivated by
this result, we pursue this idea for studying how differ-
ent deep architectures perform when resolving audio prob-
lems. To start, we first reproduce one of their experiments
using random CNNs – under the same conditions 10 : the
GTZAN dataset is split in 10 stratified folds used for cross-
validation 11 , a VGG architecture with batch normaliza-
tion is employed, and the classifier is an SVM. We found
that results can vary depending on the batch size if, when
computing the feature vectors, layers are normalized with
the statistics of current batch (batch normalization). For
example: if audio-features of the same genre are batch-
normalized by the same factor, one can create an artifi-
cial genre cue that might affect the results. One can ob-
serve this phenomena in Figure 5, where the best results
are achieved when all songs of the same genre fill a full
batch (batch size of 100). 12 We also observe that small
batch sizes are harming the model’s performance – see

9 https://github.com/zygmuntz/Python-ELM
10 https://github.com/keunwoochoi/transfer_

learning_music/ (more information is available in issue #2)
11 Our work does not use this split, we use the fault-filtered version.
12 The GTZAN has 10 genres with 100 audios each, one can fill batches

of 100 with audios of the same genre via sorting the data by genres.



in Figure 5 when batch sizes are set to 1 and 10. And
finally, when batch normalization is not used, no mat-
ter what batch size we use that the results remain the
same – ANOVA test with H0 being that averages are equal
(p-value=0.491). Since it is not desirable that performance
depends on the batch size, and that the feature vector of
an audio depends on other audios (that are present in the
batch): we decided not to use batch normalization.

Figure 5. Random CNN features behavior when using (or
not) batch normalization. Dataset: GTZAN, 10-fold cross-
validation. Performance metric (%): average accuracies
(and standard deviations) across 3 runs. Classifier: SVM.

4. RESULTS

Figures show average accuracies across 3 runs for every
feature type (listed on the right with the length of the fea-
ture vector in parenthesis). We use a t-test to reveal which
models are performing the best – H0: averages are equal.

4.1 GTZAN: music genre recognition

Figure 6. Accuracy (%) results for the GTZAN dataset
with random CNN feature vectors of length ≈ 120.

Figure 7. Accuracy (%) results for the GTZAN dataset
with random CNN feature vectors of length ≈ 3500.

The sample-level waveform model always performs better
than frame-level many-shapes (t-test: p-value�0.05). The

two best performing spectrogram-based models are: tim-
bral+temporal and VGG – with a remarkable performance
of the timbral model alone. The timbral+temporal CNN
performs better than VGG when using the ELM (≈3500)
classifier (t-test: p-value=0.017); but in other cases,
both models perform equivalently (t-test: p-value>0.05).
Moreover, the 7x86 model performs better than 7x96
when using SVMs (t-test: p-value<0.05), but when us-
ing ELMs: 7x96 and 7x86 perform equivalently (t-test: p-
value�0.05). The best VGG and timbral+temporal mod-
els achieve the following (average) accuracies: 59.65%
and 56.89%, respectively – both with an SVM (≈3500)
classifier. Both models outperform the MFCCs baseline:
53.44% (t-test: p-value<0.05), but these random CNNs
perform worse than a CNN pre-trained with the Million
Song Dataset: 82.1% [28]. Finally, note that although
timbral and timbral+temporal models are single-layered,
these are able to achieve remarkable performances – show-
ing that single-layered spectrogram front-ends (attending
to musically relevant contexts) can do a reasonable job
without paying the cost of going deep [36,39]. Thus mean-
ing, e.g., that the saved capacity can now be employed by
the back-end to learn (some more) representations.

4.2 Extended Ballroom: rhythm/tempo classification

Figure 8. Accuracy (%) results for the Extended Ballroom
dataset with random CNN feature vectors of length ≈ 120.

Figure 9. Accuracy (%) results for the Extended Ballroom
dataset with random CNN feature vectors of length ≈ 3500

The sample-level waveform model always performs bet-
ter than frame-level many-shapes (t-test: p-value�0.05).
The two best performing spectrogram-based models
are: temporal and timbral+temporal, but the tempo-
ral model performs better than timbral+temporal in
all cases (t-test: p-value�0.05) – denoting that spec-
tral cues can be a confounding factor for this dataset.
Moreover, the 7x86 model performs better than 7x96



in all cases (t-test: p-value<0.05). The best (aver-
age) accuracy score is obtained using temporal models
and SVMs (≈3500): 89.82%. Note that the temporal
model clearly outperforms the MFCCs baseline: 63.25%
(t-test: p-value�0.05) and, interestingly, it performs
slightly worse than a trained CNN: 93.7% [20]. This result
confirms that the architectures (alone) introduce a strong
prior which can significantly affect the performance of an
audio model. Thus meaning that, besides learning, de-
signing effective architectures might be key for resolving
(music) audio tasks with deep learning. In line with that,
note that the temporal architecture is designed consider-
ing musical domain knowledge – in this case: how tempo
& rhythm are expressed in spectrograms. Hence, its good
performance also validates the design strategy of using mu-
sically motivated architectures as a way to intuitively nav-
igate through the network parameters space [36, 38, 39].

4.3 Urban Sounds 8K: acoustic event detection
For these experiments we do not use the temporal model
(with 1D-CNNs of length 165, 128, 64, 32). Instead, we
study the temporal+time model – where time follows the
same design as temporal but with filters of length: 64, 32,
16, 8. This change is motivated by the fact that temporal
cues in (natural) sounds are shorter and less important than
temporal cues in music (i.e., rhythm or tempo).

Figure 10. Accuracy (%) results for the Urban Sounds 8k
dataset with random CNN feature vectors of length ≈ 120.

Figure 11. Accuracy (%) results for the Urban Sounds 8k
dataset with random CNN feature vectors of length ≈ 3500

The sample-level waveform model always performs bet-
ter than frame-level many-shapes (t-test: p-value�0.05).
The two best performing spectrogram-based models are:
VGG and timbral+time – but VGG performs better
than timbral+time in all cases (t-test: p-value�0.05).
Also, the 7x86 model performs better than 7x96 in all

cases (t-test: p-value<0.075). The best (average) accu-
racy score is obtained using VGG and SVMs (≈3500):
70.74% – outperforming the MFCCs baseline: 65.49%
(t-test: p-value<0.05), and performing slightly worse than
a trained CNN: 73% 13 [28]. Finally, note that VGGs
achieved remarkable results when recognizing genres and
detecting acoustic events – tasks where timbre is an impor-
tant cue. As a result: one could argue that VGGs are good
at representing spectral features. Hence, these might be of
utility for tasks where spectral cues are relevant.

5. CONCLUSIONS

This study builds on top of prior works showing that the
(classification) performance delivered by random CNN
features is correlated with the results of their end-to-end
trained counterparts [41, 43]. We use this property to run
a comprehensive evaluation of current deep architectures
for (music) audio. Our method is as follows: first, we
extract a feature vector from the embeddings of a ran-
domly weighted CNN; and then, we input these features
to a classifier – which can be an SVM or an ELM. Our
goal is to compare the obtained classification accuracies
when using different CNN architectures. The results we
obtain are far from random, since: (i) randomly weighted
CNNs are (in some cases) close to match the accuracies
obtained by trained CNNs; and (ii) these are able to out-
perform MFCCs. This result denotes that the architectures
alone are an important piece of the deep learning solution
and therefore, searching for efficient architectures capable
to encode the specificities of (music) audio signals might
help advancing the state of our field. In line with that, we
have shown that (musical) priors embedded in the structure
of the model can facilitate capturing useful (temporal) cues
for classifying rhythm/tempo classes. Besides, we show
that for waveform front-ends: sample-level � frame-level
many-shapes > frame-level – as noted in the (trained) lit-
erature [27, 52, 53]. The differential aspect of the sample-
level front-end is that its representational power is con-
structed via hierarchically combining small-context repre-
sentations, not by exploiting prior knowledge about wave-
forms. Further, we show that for spectrogram front-ends:
7x96<7x86 – as shown in prior (trained) works [31, 36].
By allowing the filters to convolve through the frequency
axis, the architecture itself facilitates capturing pitch-
invariant timbral representations. Finally: timbral (+tem-
poral/time) and VGG spectrogram front-ends achieve re-
markable results for tasks where timbre is important –
as previously noted in the (trained) literature [39]. Their
respective advantages being that: (i) timbral (+tempo-
ral/time) architectures are single-layered front-ends which
explicitly capture acoustically relevant receptive fields –
which can be known via exploiting prior knowledge about
the task; and (ii) VGG front-ends require no prior domain
knowledge about the task for its design. Although our
main conclusions are backed by additional results in the
(trained) literature, we leave for future work consolidating
those via doing a similar study considering trained models.

13 The same CNN achieves 79% when trained with data augmentation.
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