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ABSTRACT

Overfitting is a major problem in training machine learn-
ing models, specifically deep neural networks. This problem
may be caused by imbalanced datasets and initialization of the
model parameters, which conforms the model too closely to
the training data and negatively affects the generalization per-
formance of the model for unseen data. The original dropout
is a regularization technique to drop hidden units randomly
during training. In this paper, we propose an adaptive tech-
nique to wisely drop the visible and hidden units in a deep
neural network using Ising energy of the network. The pre-
liminary results show that the proposed approach can keep
the classification performance competitive to the original net-
work while eliminating optimization of unnecessary network
parameters in each training cycle. The dropout state of units
can also be applied to the trained (inference) model. This
technique could compress the number of parameters up to
41.18% and 55.86% for the classification task on the MNIST
and Fashion-MNIST datasets, respectively.

Index Terms— Compressed neural networks, dropout,
Ising model, overfitting, training deep neural networks.

1. INTRODUCTION

Neural networks are constructed from layers of activation
function, which produce a value by optimizing a set of
weights [1]. This complicated connection between the
weights of a network, if trained well and enough data is
available, can model complex systems. The wider and deeper
a network is, the more computational time is needed to op-
timize the weights. However, in real world problems, most
of datasets are imbalanced and limited quantities are avail-
able; for example fraud transaction versus healthy transaction
in a bank or rare diseases in medical imaging [2],[3]. This
problem may result in overfitting in training neural networks
and the model may not be generalized. A variety of regular-
ization methods have been developed to reduce overfitting,
including early-stopping [1], adding weight penalties in the
cost function of the networks such as L1 and L2 [4], and
dropout [5].

Dropout is a very effective regularization technique for
training neural networks [5]. This approach drops a random
set of units and corresponding connection from the network
during training and uses all the units at the inference (test)
time. This method not only reduces the number of parame-
ters to optimize in each training iteration, but also prevents
units from too much co-adaptation [5]. A neural network
with n units can be seen as a set of 2n small (thinned [5])
networks. Therefore, the maximum number of parameters is
O(n2). Dropout selects a network from this set of parameters
at each training iteration for optimization. Since the weights
of thinned networks are shared, a subset of parameters is up-
dated at each training iteration. However, since the number
of possible thinned networks is of exponential order, it is not
feasible to update all networks [5].

Ising model is widely used for modeling phenomena in
physics such as working of magnetic material [6]. In this pa-
per, we propose using Ising energy [6] to model dropout in
deep neural networks. We map activation values of each sin-
gle neuron to a cost value (Ising weight) in the Ising model.
The Ising weights are shipped to an optimizer, an acceler-
ated hardware architecture designed for solving combinato-
rial optimization problems using Markov-chain Monte- Carlo
(MCMC) search [7], to minimize the cost (energy) of con-
nections by flipping the binary state variables of the units.
The generated state variable is then applied as a mask on the
weight tensors for backpropagation and inference. This pro-
cess is conducted for every mini-batch of training data.

2. PROPOSED METHOD

We propose an adaptive solution compared to random dropout
using Ising model [7] for training deep multilayer perceptron
(MLP) networks.

2.1. Model Architecture

We consider an MLP network as a subgraph of a fully con-
nected graph, where each candidate node for dropout is in-
dexed as hi as in Figure 1. Figure 2 shows the overall system
design of training a neural network with Ising-Dropout. Since
the Ising model optimization is a combinatorial NP-hard [7]
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Fig. 1: Left: An MLP network with 5 inputs, two hidden layers, and
two outputs; Right: Representing the MLP in left as subset of a fully
connected graph. The candidate nodes for dropout are labeled in red.

Algorithm 1 Ising-Dropout
Initialize Weights W
Initialize Masks M = 1
Initialize Loss as L
for t = 0→ T do // iteration counter

for i = 0→ I do // mini-batch counter
Load mini-batch (X,y)
if t == 0 & i == 0 then

W, L = backPropagation(X,y,M)
W∗ = W // a copy of W

else
W = backPropagation(X,y, M̄)
W∗ = W × M̄ + W∗×NOT(M̄)
L =inference(X,y,M∗) // compute loss

end if
s =Ising-Dropout(W∗) // perform dropout
M̄ = 1
for j = 1→ N do // each candidate node to drop

if s[j] == 0 then
M̄[j] = 0

end if
end for

end for
end for

problem, we use the Fujitsu Digital Annealer (DA) [7]. The
DA machine performs an optimization process for each train-
ing epoch of the neural network and generates a state variable
for the network weights.

The pseudocode of training procedure is illustrated in Al-
gorithm 1. For the first iteration over a mini-batch in train-
ing, the backpropagation is performed on the randomly ini-
tialized weights W of the network. The updated weights after
backpropagation are then mapped to a cost matrix for Ising-
Dropout as described in the next subsection. The returned
state vector s is translated to a set of matrices M̄ to be ap-
plied as a mask on the weights of the network. This process
will repeat for a number of iterations or will be stopped using
early-stopping [1].

2.2. Ising Model for Dropout

If a neuron’s activation value is in the saturated areas, as in
Figure 3(a), it may increase the risk of overfitting. Therefore,
the objective is to keep the activation value of a neuron in

Apply Updated 

Weights 

to the Network

Fig. 2: Dropout using Ising model.

(a) Neuron activation using Sig-
moid function.

(b) Mapping neuron activation to
Ising model weight.

Fig. 3: Distribution of Sigmoid activation values for different pre-
activations. The activation value is then mapped to a cost value
(weight) for the Ising model.

the non-linear area. That might be a reason why rectified lin-
ear units (ReLU) [8] generally work better than the Sigmoid
function, since no upper boundary is defined in the activation
function. The weight between node i and j is defined as wi,j ,
the input is a vector x = (x1, x2, ..., xT ) and the output is a
vector y = (y1, y2, ..., yK) where T is the number of inputs
and K is the number of data classes. The Ising cost value for
each connection i, j from layer l − 1 to l is defined as

γ̄
(l)
i,j = G(ĥ

(l)
i,j |µ, σ

′2), (1)

such that

G(ĥ
(l)
i,j |µ, σ

′2) = 1− e−
(ĥ

(l)
i,j
−µ)2

2σ
′2 , (2)

where µ = 0.5, σ
′2 = 0.01. The activation value ĥ(l)i,j is de-

fined as

ĥ
(l)
i,j = σ(

1

Q

Q∑
q=1

h̄
(l−1)
i(q)

w
(l)
i,j). (3)

where Q is the mini-batch size and σ(·) is the Sigmoid acti-
vation function. The h̄(l)i activation value is defined as

h̄
(l)
i = σ(

|h(l−1)|∑
u=1

h(l−1)u w
(l−1)
u,i +b

(l)
i )∀l ∈ {1, ..., N−1}, (4)



Table 1: Performance comparison of various dropout method on MNIST dataset. hi: the percentage of dropped units for layer hi; P: total number of
parameters in the network. Acc: test set classification accuracy. The size of each layer in order of stacking is in parenthesis under network layers. Training
refers to applying dropout only in training phase and training+inference refers to applying dropout to training and test (inference) phases.

Network Layers (784,100,100,10) (784,100,50,50,10) (784,100,50,50,25,10)

Model
Dropout Rate

P=89,610 Acc
Dropout Rate

P=86,610 Acc
Dropout Rate

P=87,635 Acc
h0 h1 h2 Total h0 h1 h2 h3 Total h0 h1 h2 h3 h4 Total

No Dropout 0% 0% 0% 0% 94.65% 0% 0% 0% 0% 0% 95.02% 0% 0% 0% 0% 0% 0% 94.40%
Dropout (p=0.5) 0% 50.00% 50.00% 06.26% 91.02% 0% 50.00% 50.00% 50.00% 04.74% 87.59% 0% 50.00% 50.00% 50.00% 50.00% 05.27% 56.89%
Dropout (p=0.5)

(input layer included) 50.00% 50.00% 50.00% 50.00% 85.08% 50.00% 50.00% 50.00% 50.00% 50.00% 82.05% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 64.03%

Ising-Dropout (training) 0% 38.62% 42.43% 04.88% 93.83% 0% 49.21% 47.37% 26.37% 04.47% 93.78% 0% 42.59% 46.62% 43.18% 51.25% 04.64% 90.15%
Ising-Dropout (training)

(input layer included) 38.60% 32.18% 25.15% 37.71% 93.47% 40.21% 33.00% 38.31% 26.43% 39.64% 90.72% 42.18% 31.78% 33.18% 37.00% 25.37% 41.18% 90.28%

Ising-Dropout
(training+inference) 0% 38.62% 42.43% 04.88% 92.10% 0% 49.21% 47.37% 26.37% 04.47% 91.42% 0% 42.59% 46.62% 43.18% 51.25% 04.64% 91.54%

Ising-Dropout
(training+inference)

(input layer included)
38.60% 32.18% 25.15% 37.71% 91.40% 40.21% 33.00% 38.31% 26.43% 39.64% 90.85% 42.18% 31.78% 33.18% 37.00% 25.37% 41.18% 90.74%

Table 2: Performance comparison between various dropout method on the Fashion-MNIST dataset. hi: the percentage of dropped units for layer hi; P: total
number of parameters in the network. Acc: test set classification accuracy. The size of each layer in order of stacking is in parenthesis under network layers.
Training refers to applying dropout only in training phase and training+inference refers to applying dropout to training and test (inference) phases.

Network Layers (784,100,100,10) (784,100,50,50,10) (784,100,50,50,25,10)

Model
Dropout Rate

P=89,610 Acc
Dropout Rate

P=86,610 Acc
Dropout Rate

P=87,635 Acc
h0 h1 h2 Total h0 h1 h2 h3 Total h0 h1 h2 h3 h4 Total

No Dropout 0% 0% 0% 0% 84.24% 0% 0% 0% 0% 0% 83.48% 0% 0% 0% 0% 0% 0% 81.87%
Dropout (p=0.5) 0% 50.00% 50.00% 06.26% 77.27% 0% 50.00% 50.00% 50.00% 04.74% 68.74% 0% 50.00% 50.00% 50.00% 50.00% 05.27% 48.65%
Dropout (p=0.5)

(input layer included) 50.00% 50.00% 50.00% 50.00% 74.33% 50.00% 50.00% 50.00% 50.00% 50.00% 64.25% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 49.29%

Ising-Dropout (training) 0% 49.34% 48.44% 03.62% 82.73% 0% 44.84% 55.18% 40.75% 04.53% 80.57% 0% 41.35% 39.20% 46.06% 45.46% 03.10% 67.32%
Ising-Dropout (training)

(input layer included) 44.84% 49.02% 42.53% 45.07% 85.23% 38.22% 37.87% 34.00% 32.43% 38.04% 68.42% 56.65% 45.25% 48.31% 44.62% 48.12% 55.86% 66.36%

Ising-Dropout
(training+inference) 0% 49.34% 48.44% 03.62% 83.73% 0% 44.84% 55.18% 40.75% 04.53% 82.65% 0% 41.35% 39.20% 46.06% 45.46% 03.10% 73.22%

Ising-Dropout
(training+inference)

(input layer included)
44.84% 49.02% 42.53% 45.07% 86.21% 38.22% 37.87% 34.00% 32.43% 38.04% 79.82% 56.65% 45.25% 48.31% 44.62% 48.12% 55.86% 76.03%

where h̄(0)i = xi and |h(l−1)| is the number (cardinality) of
units in layer l− 1. This cost function is a non-linear mapper
from input signal to an output cost value as in Figure 3(b).
This function penalizes saturated neuron activation values by
allocating a large cost value. Note that γ̄i,j = 0 if no connec-
tion exists between units i and j.

The Ising model has a binary state vector where each
value represents the state of a unit (0 means dropped) such as
s = (s1, s2, ..., sU ) which is initialized to 1. The Ising energy
model is defined as

E(s) = −
U∑

u,v=1

γu,vsusv −
U∑

u=1

busu (5)

where γu,v = sgn(w
(l)
i,j)γ̄

(l)
i,j for a given l as in Figure 1 such

that i = u−
∑l−1

l′=0 |h(l
′)|, j = v−

∑l
l′=0 |h(l

′)|, bu is the bias
value of the unit u, and sgn(·) is the sign function. The bi-
nary state vector s represents dropout state of candidate units.
More details about DA and optimization procedure is in [7].

3. EXPERIMENTS

Many adaptive dropout methods have been proposed in the
literature [9], [10]. The objective in this paper is to study the
performance of Ising-Dropout as a regularization method for
training deep neural networks and compression of inference

model and its affect on the inference performance. The cur-
rent version of the Fujitsu DA machine has 1,024 state vari-
ables. Therefore, we had to limit the size of our models to
accommodate the DA. We performed the experiments using
MLP networks with various number of hidden layers.

3.1. Data

We investigated performance of the proposed method by
addressing the classification problem on MNIST [11] and
Fashion-MNIST [12] datasets. The MNIST dataset has 10
classes of hand written digits. The Fashion dataset has 10
classes of various clothing items. The training set had 60,000
samples, which we deployed only 32 epochs over mini-
batches to accelerate the training. The samples were shuffled
in each training iteration. The test set had 10,000 examples.

3.2. Technical Details of Training

Depending on the dataset and network architecture, various
hyperparamters are studied and the best values are reported.
We used Adam optimizer [13] with adaptive learning rate
starting at 0.01. No regularization method except dropout
(stated if applied) was used. The maximum number of train-
ing iterations was set to 200 and early stopping was applied.
The mini-batch size is set to Q=32.
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Fig. 4: Randomly selected samples of original images (top row) with corresponding Ising dropout (I(N )) or random dropout (D(N )) (p=0.5)
image (bottom row) in a network with N hidden layers for MNIST and Fashion-MNIST datasets.

Total number of parameters P to optimize in a MLP net-
work with N ≥ 1 hidden layers is

P = |x|·|h1|+
N−1∑
i=1

(|hi|·(|hi+1|+1))+(|hN |·(|y|+1))+|y|

(6)
where |hi| is the cardinality of the layer hi, x is the input
vector (layer) and y is the output vector (layer).

3.3. Results and Performance Comparisons

The performance results for three MLP network architectures,
to classify MNIST images, are presented in Table 1. The re-
sults show that the proposed Ising-Dropout has competitive
performance with no dropout method while accelerating the
training of network by optimizing a subset of network param-
eters. This method can also compress the trained inference
model by selecting the well-trained network weights while
keeping the performance competitive. The results show that
the proposed method has better dropout rate as the depth of
network increases while maintaining a high performance. As
an example, for an MLP with four hidden layers, the clas-
sification performance was 94.40% without using dropout,
where the backpropagation was performed on the entire pa-
rameters of the network and entire inference model was used
for validation. This is while the proposed Ising-Dropout
method achieved a classification accuracy of 90.74%, which
is 3.66% less than the no dropout method, but could drop on
average 41.18% of the network parameters during training.
The inference model was also compressed 41.18% smaller
than the original network, which is approximately 36,088
parameters. This performance is much higher than random
dropout of network weights.

The results show that applying Ising-Dropout during
training and later in inference results in better classification
performance, particularly for the Fashion-MNIST dataset,
which is more complex than MNIST. The results for various
depth of the network have similar behavior for the MNIST.
However, the classification accuracy of the models is lower.
There is a trade-off between performance and compression
rate of the network. At 5.84% lower accuracy for a 4-layer
MLP, the network is 55.86% smaller.

The results also show that applying dropout on the in-
put images can help the models achieve higher classification
accuracy. Figure 4 shows randomly selected samples from
MNIST dataset and visualizes corresponding Ising-dropped
image for different architectures of MLP. These examples
show that the proposed method can preserve information in
the input data and ignore unnecessary (e.g. background pix-
els) input values. The sample images show that although
some pixels are removed from the digits, the shape and struc-
ture of input data is preserved.

4. CONCLUSIONS

Deep neural networks generally suffer from two issues, over-
fitting and large number of parameters to optimize. Dropout
is a regularization method to improve training of deep neural
networks. In this paper, we propose a dropout method based
on the Ising energy, called Ising-Dropout, of the deep neu-
ral network to wisely drop input and/or hidden units from the
network while training. This approach helps the network to
avoid overfitting and optimize a subset of parameters in the
network.

The other application of the proposed method is to com-
press the trained network (inference model). The preliminary
results show that there is a trade-off between network size and
classification accuracy. The proposed Ising-Dropout method
can reduce the number of parameters in the inference network
into half while keeping the classification accuracy competi-
tive to the original network. This approach selects nodes as-
sociated with well-trained parameters of the network for in-
ference. This compression technique can increase inference
speed while maintaining the prediction accuracy, necessary
for certain applications such as mobile device and deep learn-
ing on chip. This method can also be developed for convolu-
tional neural networks in future works.
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