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ABSTRACT

We consider the optimization of deep convolutional neural

networks (CNNs) such that they provide good performance

while having reduced complexity if deployed on either con-

ventional systems with spatial-domain convolution or lower-

complexity systems designed for Winograd convolution. The

proposed framework produces one compressed model whose

convolutional filters can be made sparse either in the spatial

domain or in the Winograd domain. Hence, the compressed

model can be deployed universally on any platform, without

need for re-training on the deployed platform. To get a better

compression ratio, the sparse model is compressed in the spa-

tial domain that has a fewer number of parameters. From our

experiments, we obtain 24.2× and 47.7× compressed models

for ResNet-18 and AlexNet trained on the ImageNet dataset,

while their computational cost is also reduced by 4.5× and

5.1×, respectively.

Index Terms— Convolutional Neural Networks, Wino-

grad Convolution, Joint Sparsity, Universal Compression

1. INTRODUCTION

Deep learning with convolutional neural networks (CNNs)

has recently achieved performance breakthroughs in many of

computer vision applications [1]. However, the large model

size and huge computational complexity hinder the deploy-

ment of state-of-the-art CNNs on resource-limited platforms

such as battery-powered mobile devices. Hence, it is of great

interest to compress large-size CNNs into compact forms to

lower their storage requirements and computational costs [2].

CNN size compression has been actively investigated for

memory and storage size reduction. Han et al. [3] showed im-

pressive compression results by weight pruning, quantization

using k-means clustering and Huffman coding. It has been

followed by further analysis and mathematical optimization,

and more efficient CNN compression schemes have been sug-

gested afterwards, e.g., in [4–10]. Computational complexity

reduction of CNNs has also been investigated on the other

hand. The major computational cost of CNNs comes from

the multiply-accumulate (MAC) operations in their convolu-

tional layers [2, Table II]. There have been two directions to

reduce the complexity of convolutions in CNNs:

• First, instead of conventional spatial-domain convolution,

it is proposed to use frequency-domain convolution [11,12]

or Winograd convolution [13]. For typical small-size filters

such as 3× 3 filters, Lavin & Gray [13] showed that Wino-

grad convolution is more efficient than both spatial-domain

convolution and frequency-domain convolution.

• Second, weight pruning is another approach to reduce the

number of MACs required for convolution by skipping the

MACs involving pruned weights (zero weights). Previous

work mostly focused on spatial-domain weight pruning to

exploit sparse spatial-domain convolution of low complex-

ity, e.g., see [3, 14–18]. Recently, there have been some

attempts to prune Winograd-domain weights [19, 20].

Previous works either focused on spatial-domain weight

pruning and compression or studied Winograd-domain weight

pruning and complexity reduction. Compression of Winograd

CNNs has never been addressed before. Other shortcomings

of the previous works investigating the complexity reduction

of Winograd CNNs are that their final CNNs are no longer

backward compatible with spatial-domain convolution due to

the non-invertibility of Winograd transformation, and hence

they suffer from accuracy loss if they need to be run on the

platforms that only support spatial-domain convolution. To

our knowledge, this paper is the first to address the universal

CNN pruning and compression framework for both Winograd

and spatial-domain convolutions.

The main novelty of the proposed framework comes from

the fact that it optimizes CNNs such their convolutional fil-

ters can be pruned either in the Winograd domain or in the

spatial domain without accuracy loss and without extra train-

ing or fine-tuning in that domain. Our CNNs can be opti-

mized for and compressed by universal quantization and uni-

versal source coding such that their decompressed convolu-

tional filters still have sparsity in both Winograd and spa-

tial domains. Hence, one universally compressed model can

be deployed on any platform whether it uses spatial-domain

convolution or Winograd convolution, and the sparsity of its

convolutional filters can be utilized for complexity reduction

in either domain. Since many low-power platforms, such as

mobile phones, are expected to only support the inference

of CNNs, and not their training, our approach is more desir-

able for wide-scale deployment of pre-trained models without

worrying about underlying inference engines.

http://arxiv.org/abs/1902.08192v1
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Fig. 1. Universal CNN weight pruning and compression for both sparse Winograd and sparse spatial-domain convolutions.

2. WINOGRAD CONVOLUTION

We review the Winograd convolution algorithm [21] in this

section. For the sake of illustration, consider that we are given

a two-dimensional (2-D) input of size H×W and a 2-D filter

of size r × r for convolution. For Winograd convolution, we

first prepare a set of patches of size n× n extracted from the

input with stride of n − r + 1 × n − r + 1 for n ≥ r. Each

of the n × n patches is convolved with the r × r filter by

the Winograd convolution algorithm and produces an output

patch of size n− r + 1× n− r + 1.

Let x and y be one of the n× n input patches and its cor-

responding output patch, respectively, and let w be the r × r
filter. In Winograd convolution, the input and the filter are

transformed into the Winograd domain by X = FxFT and

W = GwGT using the Winograd transformation matrices F
and G, respectively, where the superscript T denotes the ma-

trix transpose. In the Winograd domain, both X and W are of

size n× n, and element-wise product of them follows. Then,

the output is transformed back to the spatial domain by

y = ST (W ⊙X)S, (1)

where ⊙ is the element-wise product of two matrices. The

transformation matrices F , G, and S are (r, n)-specific and

can be obtained from the Chinese remainder theorem (e.g.,

see [22, Section 5.3]). For more details, see [13, Section 4].

3. TRAINING WITH JOINT SPARSITY

CONSTRAINTS

In this section, we present our CNN training method with reg-

ularization for joint spatial-Winograd sparsity constraints. We

consider a typical CNN model consisting of L convolutional

layers. The input of layer l has Cl channels of size Hl ×Wl

and the output has Dl channels of size Hl−rl+1×Wl−rl+1,

where the input is convolved with Dl filters of size rl×rl×Cl.

For 1 ≤ l ≤ L, 1 ≤ i ≤ Cl and 1 ≤ j ≤ Dl, let wl(i, j)
be the 2-D convolutional filter for input channel i and output

channel j of layer l.

3.1. Regularization for jointly sparse convolutional filters

We choose L2 regularizers to promote sparsity, although other

regularizers such as L1 regularizers can be used instead (see

Remark 1 for more discussion). Let w be the set of all con-

volutional filters of L layers, which are learnable, i.e., w ≡
{wl(i, j), 1 ≤ l ≤ L, 1 ≤ i ≤ Cl, 1 ≤ j ≤ Dl}. Moreover,

given any matrix A, we define 1|A|≤θ as the matrix that has

the same size as A while its element is one if the correspond-

ing element a in A satisfies |a| ≤ θ and is zero otherwise.

To optimize CNNs under Winograd-domain sparsity con-

straints, we introduce the Winograd-domain partial L2 regu-

larizer given by

RWD(w; sWD) =
1

NWD

L∑

l=1

Cl∑

i=1

Dl∑

j=1

‖(Glwl(i, j)G
T
l )⊙ 1|Glwl(i,j)GT

l
|≤θWD(sWD)‖

2, (2)

where ‖·‖ denotes the L2 norm and Gl is the Winograd trans-

formation matrix determined by the filter size and the input

patch size of layer l (see Section 2); NWD is the total number

of Winograd-domain weights of all L layers.

The L2 regularization in (2) is applied only to a part of

Winograd-domain weights if their magnitude values are not

greater than the threshold value θWD(sWD). Although the con-

straints are on the Winograd-domain weights, they translate as

the constraints on the corresponding spatial-domain weights,

and the optimization is done in the spatial domain. Due to the

Winograd-domain partial L2 regularization, spatial-domain

weights are updated towards the direction to yield diminish-

ing Winograd-domain weights in part after training and being

transformed into the Winograd domain.

Given a desired sparsity level sWD (%) in the Winograd

domain, we set the threshold value θWD(sWD) to be the sWD-

th percentile of Winograd-domain weight magnitude values.

The threshold is updated at every training iteration as weights

are updated, and it decreases as training goes on since the

regularized Winograd-domain weights within the sWD-th per-

centile converge to small values. After finishing the regular-

ized training, we finally have a subset of Winograd-domain

weights clustered very near zero, which can be pruned (i.e.,

set to zero) at minimal accuracy loss (see Figure 2).

To optimize CNNs while having sparsity in the spatial do-

main, similar to (2), we regularize the cost function by the

partial sum of L2 norms of spatial-domain weights as follows:

RSD(w; sSD) =
1

NSD

L∑

l=1

Cl∑

i=1

Dl∑

j=1

‖wl(i, j)⊙ 1|wl(i,j)|≤θSD(sSD)‖
2, (3)

where NSD is the total number of spatial-domain weights of

all L layers, and θSD(sSD) is the threshold given a target spar-

sity level sSD (%) for spatial-domain weights.
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Fig. 2. Weight histogram snapshots of the AlexNet second

convolutional layer.

3.2. Training with learnable regularization coefficients

Combining the regularizers in (2) and (3), the cost function C
to minimize in training is given by

C(X ;w) = E(X ;w) + λWDRWD(w; sWD)

+ λSDRSD(w; sSD), (4)

for λWD > 0 and λSD > 0, where X is the training dataset

and the E is the network loss function such as the cross-

entropy loss for classification or the mean-squared-error loss

for regression. Here, we introduce two regularization coeffi-

cients λSD and λWD. Conventionally, we use a fixed value for

a regularization coefficient. However, we observe that using

fixed regularization coefficients for the whole training is not

efficient to find good sparse models. For small coefficients,

regularization is weak and we cannot reach the desired spar-

sity after training. For large coefficients, on the other hand,

we can achieve the desired sparsity, but it likely comes with

considerable accuracy loss due to strong regularization.

To overcome the problems with fixed regularization co-

efficients, we propose novel learnable regularization coeffi-

cients, i.e., we let regularization coefficients be learnable pa-

rameters. Starting from a small initial coefficient value, we

learn an accurate model with little regularization. As training

goes on, we induce the regularization coefficients to increase

gradually so that the performance does not degrade much but

we finally have sparse convolutional filters at the end of train-

ing. To this end, we replace λWD and λSD with eζWD and eζSD ,

respectively, and learn ζWD and ζSD instead, for the sake of

guaranteeing that the regularization coefficients always posi-

tive in training. Then, we include an additional regularization

term, i.e., −α(ζWD + ζSD) for α > 0, which penalizes small

regularization coefficients and encourages them to increase in

training. As a result, the cost function in (4) is altered into

C(X ;w, ζWD, ζSD) = E(X ;w) + eζWDRWD(w; sWD)

+ eζSDRSD(w; sSD)− α(ζWD + ζSD). (5)

The indicator functions in (2) and (3) are non-differentiable,
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Fig. 3. Sparse convolutional filters from the AlexNet second

convolutional layer, obtained after pruning in either domain.

which is however not a problem when computing the deriva-

tives of (5) in practice for stochastic gradient descent.

In Figure 2, we present how the weight histogram (distri-

bution) of the AlexNet second convolutional layer evolves in

the Winograd and spatial domains when trained with the pro-

posed cost function in (5). Observe that a part of the weights

converges to zero in both domains, which can be pruned at

minimal accuracy loss. In Figure 3, we present sparse convo-

lutional filters obtained after pruning either in the Winograd

domain and in the spatial domain. They are sampled from the

5× 5 filters of the AlexNet second convolutional layer, where

we use Winograd convolution of (r, n) = (5, 8) in Section 2.

Remark 1. As observed above, we have presented our algo-

rithms using L2 regularizers. Often L1 norms are used to pro-

mote sparsity (e.g., see [23]), but here we suggest using L2

instead, since our goal is to induce small-value weights rather

than to drive them to be really zero. The model re-trained with

our L2 regularizers is still dense and not sparse before prun-

ing. However, it is jointly regularized to have many small-

value weights, which can be pruned at negligible loss, in both

domains. The sparsity is actually attained only after pruning

its small-value weights in either domain. This is to avoid the

fundamental limit of joint sparsity, similar to the uncertainty

principle of the Fourier transform [24].

4. UNIVERSAL COMPRESSION AND DUAL

DOMAIN DEPLOYMENT

A universal CNN compression framework is proposed in [9],

where CNNs are optimized for and compressed by universal

quantization [25] and universal entropy source coding with

schemes such as the variants of Lempel–Ziv–Welch [26–28]

and the Burrows–Wheeler transform [29].

Our universal compression pipeline under joint sparsity

constraints is summarized in Figure 1. We randomize spatial-

domain weights by adding uniform random dithers, and quan-

tize the dithered weights uniformly with interval ∆ by

qi = ∆ · round((ai + Ui)/∆), (6)

where a1, . . . , aNSD
are the individual spatial-domain weights

of all L layers, and U1, . . . , UNSD
are independent and iden-

tically distributed uniform random variables with the support

of [−∆/2,∆/2]; the rounding yields the closest integer of

the input. The weights rounded to zero in (6) are pruned and

fixed to be zero in the compressed model. The random dither-

ing values or their random seed are assumed to be known at



Table 1. Accuracy and complexity of pruned ResNet-18 mod-

els when using different regularization methods.

Regularization

(sparsity s)

Pruning

ratio

(1) Spatial domain (2) Winograd domain

Top-1 / Top-5 # MACs Top-1 / Top-5 # MACs

accuracy per image accuracy per image

Pre-trained model - 68.2 / 88.6 2347.1M 68.2 / 88.6 1174.0M

SD (80%) 80% 67.8 / 88.4 837.9M 56.9 / 80.7 467.0M

WD (80%) 80% 44.0 / 70.5 819.7M 68.4 / 88.6 461.9M

WD+SD (80%) 80% 67.8 / 88.5 914.9M 67.8 / 88.5 522.6M

deployment, and the dithering values are cancelled for the un-

pruned weights after decompression by q̂i = qi − Ui · 1qi 6=0,

where q̂i is the final deployed value of weight ai for inference.

For one compressed model, we make the model actually

sparse in the spatial domain by pruning small-value weights

that are quantized to zero in the spatial domain. The result-

ing quantized model is sparse in the spatial domain, but it

becomes dense in the Winograd domain. To recover the spar-

sity in the Winograd domain and to compensate the accuracy

loss from quantization, we fine-tune the spatial-domain quan-

tization codebook with the Winograd-domain L2 regularizer.

Using the cost function C = E + eζWDRWD − αζWD instead

of (5), the average gradient is computed for unpruned weights

that are quantized to the same value in (6). Then, their shared

quantized value in the codebook is updated by gradient de-

scent using the average gradient of them. We emphasize here

that the pruned weights in (6) are not fine-tuned and stay zero.

At deployment, the compressed model is decompressed to

get unpruned spatial-domain weights. Then, the CNN can be

deployed in the spatial domain with the desired sparsity. If we

deploy the CNN in the Winograd domain, its convolutional

filters are transformed into the Winograd domain, and pruned

to the desired sparsity level (see deployment in Figure 1).

5. EXPERIMENTS

We experiment with our universal CNN pruning and compres-

sion scheme on the ResNet-18 model [30] trained for the Im-

ageNet ILSVRC 2012 dataset [31]. As in [20], we modify the

original ResNet-18 model by replacing its convolutional lay-

ers of stride 2×2 with convolutional layers of stride 1×1 and

max-pooling layers, to deploy Winograd convolution for all

possible convolutional layers. One difference from [20] is that

we place max-pooling after convolution (Conv+Maxpool) in-

stead of placing it before convolution (Maxpool+Conv). Our

modification provides better accuracy (see Figure 4).

The Winograd-domain regularizer is applied to all 3 × 3
convolutional filters. We assume to use Winograd convolution

of (r, n) = (3, 4) for 3× 3 filters (see Section 2). The spatial-

domain regularizer is applied to all convolutional and fully-

connected layers not only for pruning but also for compres-

sion in the spatial domain. We use the Adam optimizer [32]

with the learning rate of 1e-5 for 500k iterations with the
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Fig. 4. Accuracy comparison for the pruned ResNet-18 mod-

els at different sparsity levels in the Winograd domain.

Table 2. Compression results for ResNet-18 and AlexNet.

Model Method CR (1) Spatial domain (2) Winograd domain

Top-1 / Top-5 # MACs Top-1 / Top-5 # MACs

accuracy per image accuracy per image

ResNet-18
Pre-trained - 68.2 / 88.6 2347.1M 68.2 / 88.6 1174.0M

Ours 24.2 67.4 / 88.2 888.6M 67.4 / 88.2 516.4M

AlexNet

Pre-trained - 56.8 / 80.0 724.4M 56.8 / 80.0 330.0M

Ours 47.7 56.1 / 79.3 240.0M 56.0 / 79.3 142.6M

Han et al. [3] 35.0 57.2 / 80.3 301.1M N/A N/A

Guo et al. [16] N/A 56.9 / 80.0 254.2M N/A N/A

Li et al. [19] N/A N/A N/A 57.3 / N/A 319.8M

batch size of 128. We set α = 1 in (5).

In Table 1, we summarize the accuracy and the number of

MACs to process one input image for pruned ResNet-18 mod-

els. We compare three models obtained with spatial-domain

regularization only (SD), Winograd-domain regularization

only (WD), and both regularizations (WD+SD). As expected,

the proposed regularization method produces its desired spar-

sity only in the regularized domain. If we prune weights in

the other domain, then we suffer from considerable accuracy

loss. Using both Winograd-domain and spatial-domain reg-

ularizers, we can produce one model that can be sparse and

accurate in both domains. In Figure 4, we compare the accu-

racy of our pruned ResNet-18 models to the ones from [20].

Table 2 shows the compression results for the ResNet-18

and AlexNet models. The compression ratio (CR) is the ratio

of the original model size to the compressed model size. We

note that the previous approaches [3, 16, 19] produce sparse

models only in one domain, while our method produces one

compressed model that can be used in both domains.

6. CONCLUSION

We introduced a CNN pruning and compression framework

for hardware and/or software platform independent deploy-

ment. The proposed scheme produces one compressed model

whose convolutional filters can be made sparse in both Wino-

grad and spatial domains without further training. We showed

that the proposed method successfully compresses ResNet-18

and AlexNet with compression ratios of 24.2× and 47.7×,

while reducing their complexity by 4.5× and 5.1×, respec-

tively, when using sparse Winograd convolution. Our regular-

ization method can be extended for sparse frequency-domain

convolution, which remains as our future work.
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