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ABSTRACT

The neighbor discovery paradigm finds wide application

in Internet of Things networks, where the number of ac-

tive devices is orders of magnitude smaller than the total

device population. Designing low-complexity schemes

for asynchronous neighbor discovery has recently gained

significant attention from the research community. Con-

currently, a divide-and-conquer framework, referred to as

coupled compressive sensing, has been introduced for the

synchronous massive random access channel. This work

adapts this novel algorithm to the problem of asynchronous

neighbor discovery with unknown transmission delays.

Simulation results suggest that the proposed scheme re-

quires much fewer transmissions to achieve a performance

level akin to that of state-of-the-art techniques.

Index Terms— Neighbor discovery, random access,

compressive sensing, forward error correction, asyn-

chronous schemes.

1. INTRODUCTION

Neighbor discovery is a frequently occurring task in Inter-

net of Things (IoT) networks [1]. In this context, a node

within a wireless network seeks to identify all neighbors

with which it can communicate directly. The total number

of potential devices in a typical IoT network is on the or-

der of billions. Hence, there is a pressing need to design

algorithms whose computational complexity scales mod-

erately with the number of devices and bandwidth [1–7].

Further, because devices are at different geographical lo-

cations, their transmissions are typically asynchronous as

perceived by the receiver. It is thus important to design

coding schemes that perform well in the presence of asyn-

chronous transmissions.

The interest in finding good solution to neighbor dis-

covery is evinced by the large number of contributions on

this topic. In particular, tools from compressive sensing

have been employed to design algorithms for neighbor
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discovery in [1, 5–7]. Two different paradigms are pro-

posed for synchronous neighbor discovery in [5]. The

first algorithm employs random on-off signatures and the

query node discovers its neighbors using a variation of

group testing. The other algorithm is based on second or-

der Reed-Muller codes followed by chirp reconstruction.

In [6], the authors employ sparse Kerdock matrices as

codebooks for synchronous neighbor discovery. Still, the

schemes developed in [5, 6] rely on symbol synchronicity

across transmissions, and they cannot be used when sig-

nals are asynchronous. In [7], LASSO is employed for

node identification in an asynchronous random access sce-

nario. Regrettably, the schemes mentioned above do not

scale well when the device address space becomes huge

(e.g., 48-bit IEEE 802.11 MAC addresses [8]). In [1], an

asynchronous neighbor discovery scheme based on sparse

orthogonal frequency division multiplexing (S-OFDM) is

proposed. This approach is shown to scale well with the

device address space. That is, the computational complex-

ity of this scheme scales linearly with the number of active

devices, and logarithmically with the cardinality of the

address space.

In this paper, we develop a scalable, asynchronous

neighbor discovery algorithm tailored to large address

spaces. This novel approach requires substantially fewer

transmissions (smaller bandwidth) than previously pub-

lished alternatives [1] to achieve a comparable error per-

formance. The proposed scheme builds on our earlier

work on coupled compressive sensing (CCS), which first

appeared in the treatment of the unsourced and uncoordi-

nated multiple access channel [9]. Herein, we demonstrate

that a variant of the CCS algorithm outperforms state-of-

the-art schemes for asynchronous neighbor discovery as

well. There are a few key features that distinguish the

massive random access paradigm considered in [9] and

the neighbor discovery problem at hand. Only additive

white Gaussian noise (AWGN) appears in [9], whereas the

present article considers a flat fading environment where

channel coefficients are unknown at the receiver. Also,

transmissions are synchronous in [9]; the modified CCS

algorithm must thence be extended to asynchronous cases.
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Having reviewed existing contributions, we turn to the

presentation of our scheme. Throughout, we employ the

following notation. DFTk symbolizes the k × k discrete-

Fourier transform matrix. The cardinality of set S is repre-

sented by |S|. We employ C, Z, and Z+ to denote complex

numbers, integers, and non-negative integers, respectively.

For any a, b ∈ Z, [a : b] = {c ∈ Z : a ≤ c ≤ b}. For a

vector x = [x1 x2 · · ·xn] ∈ Cn, supp(x) = {k ∈ [1 : n] :
xk 6= 0}, ‖x‖0 = | supp(x)|, and ‖x‖p is the standard ℓp
norm with p ≥ 1. We write X ∼ U[a, b] to indicate that

X is uniformly distributed between a and b. Symbols 0n,

0k×n denote the all-zero column vector of length n and the

k × n all-zero matrix, respectively. We use δi,j to denote

the standard Kronecker delta function.

2. SYSTEM MODEL

Let Ktot be the collection of all nodes and K ⊆ Ktot

be the subset of active nodes within a network. For

convenience, we assign parameters to the cardinalities

of these sets, namely |Ktot| = Ktot and |K| = K .

An active device k ∈ K transmits a frame (codeword)

xk = [xk,0 xk,1 · · ·xk,N−1]
T ∈ CN of N complex sym-

bols with E[‖xk‖22] = N . The signal received by the query

node at time instant i is given by

yi =
∑

k∈K

√
Phkxk,i−τk + wi, (1)

where hk denotes the complex fading coefficient of the link

between node k and the query node, τk is the discrete de-

lay in terms of symbols experienced by the signal sent by

device k, P represents the transmission power, and wi is

complex additive white Gaussian noise with zero mean and

unit variance. We explore two fading models.

Fading Model I: To facilitate a fair comparison between

the proposed scheme and the approach of [1], we assume

that the magnitude of each fading coefficient is bounded

above and below by two constants, h and 2h, and its phase

is distributed uniform between 0 and 2π. Specifically,

|hk| ∼ U[h, 2h] and ∠hk ∼ U[0, 2π] for all k ∈ K.

The signal-to-noise ratio (SNR) for this model is equal to

SNR = P |h|2/2.

Fading Model II: In this model, we incorporate the effects

of network topology and signal propagation loss into fad-

ing. Similar to [5], we assume that the channel gains follow

a Pareto distribution with scale parameter η > 0 and shape

parameter α > 11. The transmission SNR for this model is

given by SNR = Pη/2.

The delays are specific to each communication link,

and remain constant over the duration of a frame. Fur-

ther, they are bounded above by a known constant T , i.e.,

T = maxk∈K τk, since we are interested only in discover-

ing neighbors who fall within a bounded distance. We refer

1See [5] for details regarding how this model is relevant to the neigh-

bor discovery problem.

to the special case T = 0 as synchronous neighbor dis-

covery. The receiver assumes that signals are only present

during the frame duration, i.e., sk,i = 0 when i < 0 or

i > N − 1 for k ∈ K. The receiver is tasked with find-

ing K̂, an estimate of the unknown collection K of active

nodes, given measurements y = [y0 y1 · · · yN−1]
T. To

facilitate neighbor discovery, every active device needs to

embed its identity in the transmission. Since the system

features Ktot devices, nodes can be distinguished using

roughly log2 Ktot bits, which are encoded into N complex

symbols and sent. Thus, we have a multiple access system,

with K active devices intending to transmit log2 Ktot bits

each by encoding them into N complex symbols.

The error probability of the system is defined as

the probability that the estimated set K̂ is not the same

as the actual set K of active devices. Mathematically,

Pe = Pr[K̂ 6= K]. Our objective is to design a low-

complexity coding scheme that offers good error perfor-

mance with respect to SNR at low codeword lengths.

3. PROPOSED SCHEME

Our new scheme is based on adapting the CCS algo-

rithm [9] to the needs of neighbor discovery. We initiate

the discussion with the encoding scheme. As mentioned

above, the amount of information needed to identify a

device is B = log2 Ktot, and we refer to this data as the

message bits. Every B-bit message is encoded into N
complex symbols, and active devices concurrently trans-

mit the resulting signals. The encoding process features an

outer encoder, which is referred to as the tree encoder, and

an inner CS encoder; these two parts are explained below.

Tree Encoder: The tree encoder splits the B-bit identity

into several sub-blocks, each of which is amenable to CS

recovery. To this end, the B-bit message is partitioned into

n sub-blocks and redundancy is added to some blocks. Let

mi denote the number of message bits present in the ith

sub-block,
∑n−1

i=0 mi = B. Let li denote the number of

redundant parity-check bits added to sub-block i, with l0 =
0; We never add parity bits to the 0th sub-block. The length

of each coded sub-block is J , i.e., mi + li = J for i ∈ [0 :
n− 1]. We denote the length of coded block by M , which

yields B +
∑n−1

i=0 li = M . The parity-check bits added

in the ith sub-block act as random parity check constraints

for all the message bits preceding it2.

CS Encoder: Every coded sub-block of J bits is further

encoded into Ñ = N
n

complex symbols by the CS en-

coder. That is, every M -bit output of the tree encoder

is mapped into N complex symbols by the CS encoder.

Specifically, each sub-block corresponding to a device is

first encoded into Ñ − T complex symbols via a matrix

S = [s1 s2 · · · s2J ] ∈ C(Ñ−T )×2J . This is accomplished

2See [9] for more details regarding the construction of parity-check

bits, their allocation across sub-blocks and the theoretical analysis of error

probability and computational complexity of the CCS scheme.



through a bijective function f : {0, 1}J 7→ {sj , j ∈ [1 :
2J ]} that maps sub-blocks into columns of S. When trans-

missions are synchronous (T = 0), the receiver observes

superimposed sub-blocks and it can recover individual sub-

blocks by implementing a CS decoding algorithm. On the

other hand, when transmissions are asynchronous, there

may be interference from other sub-blocks. To prevent this

from occurring, each column in S is padded with T zeros

to form the codebook SZP = [ST0T
T ×2J ]

T ∈ CÑ×2J . In

other words, each sub-block of length J bits is encoded

into a column of SZP and transmitted over the channel.

At this stage, we turn to the decoding process, which

also features two components: an inner CS decoder, which

recovers sub-blocks from asynchronous noisy measure-

ments; and an outer tree decoder, which connects all the

sub-blocks corresponding to a parent message.

CS decoder: A compressive sensing framework for asyn-

chronous multiple access was first developed in [7]. Let

I(i) = {ik : k ∈ K} ⊂ [1 : 2J ] denote the indices cor-

responding to the columns of SZP transmitted during ith

sub-block. Since the maximum delay T is known to the

decoder, the signal received during the ith sub-block can

be written as

y(i) =
∑

k∈K
hks̃

(τk)
ik

+w(i), (2)

where s̃
(τk)
ik

= [0T
τk

sTik 0T
T −τk

]T ∈ CÑ , a shifted version

of sTik with zero paddings. Equation (2) can be expressed

in matrix form as

y(i) = S̃h̃(i) +w(i), (3)

where S̃ = [S̃1 S̃2 · · · S̃2J ] is an Ñ × 2J(T + 1) matrix,

and sub-matrices S̃j = [s̃
(0)
j s̃

(1)
j · · · s̃(T )

j ] ∈ CÑ×(T +1)

for j ∈ [1 : 2J ]. The vectors h̃(i) = [h̃
(i)
1 h̃

(i)
2 · · · h̃(i)

2J
]T ∈

C2J (T +1) are defined by

h̃
(i)
j =

∑
k∈K

[0T
τk

hk 0T
T −τk

]Tδj,ik . (4)

Equation (3) resembles a standard compressed sensing set-

ting with y(i) acting as the observation vector and S̃ being

the sensing matrix. The CS decoder constructs the sensing

matrix S̃ using the procedure outlined above. An estimate
ˆ̃
h(i) of vector h̃(i) is first computed using measurements

y(i) by implementing any standard CS decoding technique.

The final estimate of h̃(i) is subsequently obtained by tak-

ing the best K-term approximation3 to the vector
ˆ̃
h(i).

Tree Decoder: The purpose of the tree decoder is to string

together the message components identified by the CS de-

coder. Our choice algorithm is adapted from [9]. Yet, in

contrast to our previous work, the concatenation process is

informed by both the parity-check bits and the fading co-

efficients returned by the CS decoder. Integrating the soft

3The best s-term approximation to a vector x ∈ Cn is defined as

x̂s = argmin
z∈Cn,||z||0≤s

||x− z||2.

estimates is a means to reduce the amount of redundancy

needed in the tree code. Pragmatically, the ability to dis-

criminate between fade levels is key in successfully lever-

aging soft estimates. When the fading profile is severe,

the coefficients become very useful in terms of piecing to-

gether message components. However, when fade varia-

tions are minimal, the system must revert back to adding

parity bits. The tree decoding algorithm is explained be-

low.

Every candidate sub-block listed by the CS decoder at

the onset of the process becomes a root of a decoding tree.

Given a root sub-block, layer 1 of the tree is composed of

all K sub-blocks found on the second list of the CS de-

coder. This process continues, adding K branches to every

node, until the final CS decoding stage is reached. This

results in a tree with Kn−1 leafs. The tree decoder then

proceeds iteratively to aggregate the sub-blocks that corre-

spond to one parent message among these Kn−1 possible

paths. The vectors {h̃(i)}n−1
i=0 in (3) have different sup-

port sets, yet they share the same non-zero entries because

the fading coefficient corresponding to a device does not

change across sub-blocks. Thus, the soft fade estimates of-

fered by the CS decoder can act as statistical features to

piece together the sub-blocks associated with one parent

message. To this end, at stage i of the tree decoding pro-

cess, we only retain a subset Li ⊆ [1 : Ki] of nodes whose

estimates of the fading coefficients are comparable to the

estimate of the fade level based on the paths retained up to

stage i − 1. We further prune the decoding tree by only

keeping partial paths that satisfy the li constraints associ-

ated with parity check bits. At stage i+1, the tree decoder

focuses exclusively on the children of nodes that survived

stage i. If there exists a single valid path at the end, the

decoder outputs the corresponding message; otherwise, it

declares a failure. Fig. 1 illustrates various stages involved

in our tree decoding algorithm.
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Fig. 1: This graph illustrates the tree decoding process.

Fading coefficients are captured by the shade of nodes. At

every stage, only nodes that are close to the fade estimate

are retained. Parity check constraints are then verified for

residual partial paths to further prune the tree. The high-

lighted path represent the unique survivor of this process,

and thereby forms the basis for the decoded message.



4. SIMULATION RESULTS

In this section, we present simulation results that showcase

the performance of the proposed scheme and compare it to

the performance of the scheme found in [1]. A random sub-

matrix ofDFT2J of dimension Ñ−T ×2J is chosen as the

device codebook S for all simulations. These matrices are

known to satisfy the restricted isometry property (RIP) and

to be a good choice for noisy compressed sensing [10]. The

LASSO algorithm is utilized to solve the CS sub-problems.

Fading Model I: We consider a network with Ktot =
238 devices and an active device population with K ∈
{10, 100}. The number of sub-blocks, the length of each

sub-block, and the number of parity check bits in each

sub-block are chosen as n = 6, J = 10, [l0 l1 · · · l5] =
[0 0 0 2 10 10] for K = 10; and n = 10, J = 11,

[l0 l1 · · · l9] = [0 5 7 7 7 7 7 10 11 11] for K = 100. For

this first fading model, the channel gains are distributed

within a fairly small range. As such, the reconstruction

error of the soft channel estimates will largely be unin-

formative. Thus, in this case, tree decoding only relies

on parity-check bits to stitch the sub-blocks of a message

together. In Fig. 2, the error probability of synchronous

neighbor discovery is plotted as a function of SNR. For

the same number of channel uses, the proposed scheme

provides about 10 dB improvement over the results in [1].

Similarly, for a same error performance, the required code-

word length is reduced by approximately 75%.
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Fig. 2: This graph shows the error probability of syn-

chronous neighbor discovery as a function of SNR, and

hints at the superior performance of the proposed scheme.

Figure 3 illustrates the performance of asynchronous

neighbor discovery. The maximum transmission delay is

set to T = 20 symbols, and the delay τk of active device k
is drawn uniformly at random from [0 : T ]. Again, we see

a substantial performance improvement for the proposed

scheme, compared to [1]. A given error probability can be
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Fig. 3: The error probability of asynchronous neighbor dis-

covery is compared in this graph for fading model I.

achieved with a reduction in codeword length of approxi-

mately 82% for K = 10, and 70% for K = 100.

Fading Model II: We consider a network with Ktot = 238,

K = 20 and T = 0. The number of sub-blocks n = 4,

each sub-block is of length 12 and the parity-check bits are

allocated as [l0 l1 l2 l3] = [0 0 0 10]. The scale param-

eter of Pareto distribution is set to η = 0.05. Since the

Pareto distribution has a heavy tail, the channel gains are

distributed over a larger range and their estimates serve as

an outer code in this model. Figure 4 shows the proba-

bility of missed detection for various values of the shape

parameter α. It can be seen that increasing α worsens the

performance, since the channel gains tend to concentrate

within a small range. Note that these are not comparison

curves in this case because this fading scenario was not

treated in [1].
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Fig. 4: This plot showcases the feasibility of leveraging

fading coefficients to stitch sub-blocks together.
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