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ABSTRACT
Improper Gaussian signaling (IGS) has been shown to enlarge
the rate region achievable by conventional proper Gaussian
signaling (PGS) schemes in several interference-limited mul-
tiuser networks. In this work, we consider the 2-user broad-
cast channel (BC) when treating interference as noise “TIN”
at every receiver. For this scenario, we derive a closed-form
characterization of the rate region boundary with IGS. The
Pareto-optimal points are achieved when at least one of the
users employs maximally improper (rectilinear) signals. Dif-
ferently from other interference-limited networks, our results
show that IGS always outperforms PGS for the 2-user BC
with TIN. Furthermore, IGS also enlarges the PGS rate re-
gion with time-sharing for this scenario.

Index Terms— Broadcast channel, improper Gaussian
signaling, treating interference as noise.

1. INTRODUCTION

Improper Gaussian signaling (IGS) has recently been pro-
posed as a low-complexity approach to handle interference in
multiuser networks [1]. Contrary to the conventional proper
Gaussian signaling (PGS), in IGS the real and imaginary
parts of the transmit signals are correlated and/or have un-
equal power [2]. Such a statistical property has been shown
to pay off in interference-limited scenarios when treating in-
terference as noise (TIN). The benefits of IGS over PGS have
been shown in, e.g., the interference channel [1, 3–9], relay
channels [10], and cognitive radio networks [11–13], to name
a few.

The broadcast channel (BC), where a transmitter sends
distinct information to a set of receivers, is one of the funda-
mental multiuser communication scenarios. The capacity of
the BC is achieved by PGS with superposition coding and
successive interference cancellation [14, 15]. Such a non-
linear scheme, however, entails higher complexity than a lin-
ear transceiver that treats interference as noise and presents
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also some issues regarding its practical implementation [16].
With TIN, IGS has been shown to outperform PGS in the
multiantenna BC [17]. The parameters of the IGS scheme
can then be optimized applying existing numerical methods.
However, solutions based on numerical optimization do not
permit drawing insights into the features of IGS. For example,
an intriguing question is under which conditions IGS outper-
forms PGS. Such analytical results have been obtained, e.g.,
for the Z-interference channel in [9], where it was shown that
IGS outperforms PGS when the ratio between the gain of the
cross-link and that of the direct link is above a certain thresh-
old. A similar result was also obtained for a cognitive radio
scenario in [11].

In order to shed light onto the behavior of IGS in the
BC with TIN, we consider a single-antenna 2-user BC. We
analyze the boundary of the achievable rate region for this
setting and derive closed-form expressions for the value of
the parameters that attain the rate region boundary. Inter-
estingly, our results show that all Pareto-optimal points are
achieved when at least one of the users employs maximally
improper signals and, unlike other interference-limited sce-
narios, IGS always outperforms PGS with TIN for the 2-user
BC. Furthermore, there are boundary points for which one of
the users transmits real-valued signals while the other uses
purely imaginary signals. These boundary points strictly out-
perform PGS with time-sharing (TS).1 Furthermore, we show
that maximally improper (rectilinear) signaling is optimal for
at least one user.

2. SYSTEM MODEL

We consider a single-antenna 2-user BC with TIN. The re-
ceived signal at the ith user is given by

yi = hi(
√
α1ps1 +

√
α2ps2) + ni, i = 1, 2, (1)

where hi is the channel coefficient of the ith user, ni is proper
Gaussian noise with variance σ2

i , and si is the signal intended
to the ith user, which is Gaussian with unit variance. The pa-
rameter p is the transmit power, whereasαi, withα1+α2 = 1,

1We consider a TS scheme in which the power constraint is satisfied at
each operating point. We refer the reader to [18] for an extended analysis of
IGS with TS.



determines the percentage of transmit power devoted to the
ith-user’s message. Since the system is limited by interfer-
ence, we allow the base station to transmit improper Gaussian
signals.2 Taking this into account, the achievable rate of the
ith user, i = 1, 2, is [4]

Ri = 1
2 log

[
(pgi+σ2

i )
2−p2g2

i |α1κ1e
jφ1+α2κ2e

jφ2 |2
(αı̄pgi+σ2

i )
2−α2

ı̄p
2g2
i κ

2
ı̄

]
,

(2)

where gi = |hi|2, ı̄ = 2 if i = 1 and ı̄ = 1 if i = 2, and
the logarithm is taken with base 2. The parameters κi and φi
are the circularity coefficient and phase of the complementary
variance, respectively, of si.

For this setting, we are interested in the Pareto boundary
of the achievable rate region, which is the region obtained as
the union of all achievable rate pairs. To this end, we first no-
tice from (2) that both rates are simultaneously maximized by
taking φ1 = φ2+π. This choice can be interpreted by looking
at the distribution of each user’s signal. Their probability den-
sity contour are ellipses whose major axes are orthogonal to
each other [2]. Therefore, since the desired signal for one user
is interference for the other, this choice makes in turn the de-
sired signal and the interference exhibit this property at both
receivers simultaneously. Denoting α1 = α and α2 = 1− α,
we have three parameters to optimize, namely, α, κ1, and κ2.
The achievable rates (2) can then be expressed as

R1 =
1

2
log

[
(pg1 + σ2

1)2 − p2g2
1 [ακ1 − (1− α)κ2]2

[(1− α)pg1 + σ2
1 ]2 − (1− α)2p2g2

1κ
2
2

]
, (3)

R2 =
1

2
log

[
(pg2 + σ2

2)2 − p2g2
2 [ακ1 − (1− α)κ2]2

(αpg2 + σ2
2)2 − α2p2g2

2κ
2
1

]
, (4)

and the rate region is

R =
⋃

0≤α≤1

0≤κi≤1

(R1, R2) . (5)

The Pareto boundary of the rate region defined above is com-
prised of rate pairs such that the rate of one user cannot in-
crease without decreasing the other user’s rate [19]. There-
fore, each boundary point can be obtained as the solution of

maximize
0≤{α,κ1,κ2}≤1

R2, (6a)

subject to R1 ≥ R̄1, (6b)

where R̄1 = τ log
(

1 + pg1

σ2
1

)
, with 0 ≤ τ ≤ 1. Vary-

ing τ between 0 and 1 and solving the above problem yields
the boundary of the achievable rate region. Even though the
above problem is a non-convex optimization problem, we will
show in the next section that an analytical solution is possible
for the global optimal point.

2See [11] for an introduction on improper random variables.

3. BOUNDARY OF THE RATE REGION

Our first result about the optimal solution of (6) is stated in
the following lemma.

Lemma 1. Every point of the boundary of the rate region de-
fined in (5) is achieved when at least one of the users employs
maximally improper signaling, i.e., κ1 = 1 and/or κ2 = 1.

Proof. First, we can rewrite the rate constraint R1 ≥ R̄1 as a
constraint on κ2, after some manipulations, as

κ2 ≥
−αpg1κ1

(1− α)pg1β1

+

√
β2

1γ
2
1 − β1(β1 + 1)αpg1[2γ1 − αpg1] + (β1 + 1)(αpg1κ1)2

(1− α)pg1β1
,

(7)
where β1 = 22R̄1−1, and γ1 = pg1+σ2

1 . We now take equal-
ity in the foregoing expression and plug it into (4), which
yields an expression for R2 that only depends on α and κ1.
Let us denote this expression as R2(α, κ1). Since the rate
constraint on user 1 has already been accounted for with (7),
the dependency of R2(α, κ1) on κ1 can be analyzed by eval-
uating its derivative. By doing so, we obtain that R2(α, κ1) is
increasing in κ1 if and only if

−
{

2p2g2
2κ̃

[
α− (1− α)

∂κ2

∂κ1

]}
[(αpg2 + σ2

2)2 − (αpg2κ1)2]

+ 2(αpg2)2κ1

{
γ2

2 − p2g2
2κ̃

2
}
≥ 0,

(8)
where γ2 = pg2 + σ2

2 , κ̃ = ακ1 − (1− α)κ2, κ2 is given by
(7), and

∂κ2

∂κ1
=

ακ̃

(1− α) [ακ1 + (1− α)κ2β1]
. (9)

Now we will show that condition (8) is fulfilled regardless of
the values of its parameters. To this end, we plug (9) into (8),
yielding

ακ1 [ακ1 + (1− α)κ2β1]
{
γ2

2 − p2g2
2κ̃

2
}

≥ (1− α)κ2(β1 + 1)κ̃[(αpg2 + σ2
2)2 − (αpg2κ1)2] .

(10)

Let us recall that α, κ1, and κ2 belong to the interval [0, 1],
and then −1 ≤ κ̃ ≤ 1. The left-hand side of (10) is always
positive, while the right-hand side is equal to or smaller than
zero when κ̄ ≤ 0 or, equivalently, ακ1 ≤ (1 − α)κ2. Then,
(10) holds for ακ1 ≤ (1 − α)κ2. When this condition is not
fulfilled, after some manipulations (10) can be rewritten as

ακ1κ̃
{
γ2

2 + p2g2
2(1− α)2κ2

2(β1 + 1)− p2g2
2κ̃

2
}

+ (1− α)2κ2
2(β1 + 1)(αpg2 + σ2

2)2

+ ακ1(1− α)κ2(β1 + 1)[γ2
2 − (αpg2 + σ2

2)2] ≥ 0 . (11)

When ακ1 > (1 − α)κ2, the first line in (11) is always non-
negative. The second line is also non-negative since all of its



terms are non-negative. In addition, the third line is always
positive because γ2 ≥ αpg2 + σ2

2 . Thus, (10) holds as well
for ακ1 > (1 − α)κ2. This means that R2(α, κ1) is non-
decreasing in κ1 for all values of α. Consequently, R2(α, κ1)
is maximized for κ1 = 1 except if (7) returns a value greater
than one. In such a case, κ1 must then be chosen as the max-
imum value for which κ2 = 1. Since this is the case for any
value of α, every point of the Pareto boundary is therefore
achieved by κ1 = 1 and/or κ2 = 1, which concludes the
proof.

Lemma 1 provides an interesting result: With TIN, im-
proper signaling outperforms proper signaling for every point
of the Pareto boundary.3 Furthermore, maximally improper
signaling is always optimal at least for one user. This be-
havior differs from other wireless scenarios, such as underlay
cognitive radio networks [11], where improper signaling was
shown to be optimal only when the ratio between the gains
of the interference link and the direct link is above a certain
threshold. In the BC channel, however, the signal and the in-
terference for each user travel through the same channel. Fur-
thermore, since we are considering a degraded BC, the condi-
tion for the optimality of IGS will always be met for at least
one of the users in every Pareto optimal point. Therefore, IGS
with at least one user transmitting maximally improper Gaus-
sian codewords is optimal for the 2-user BC with TIN.

In the following, we obtain the optimal transmission pa-
rameters to attain a Pareto-optimal point, namely, the values
of κ1, κ2, and α. From Lemma 1, at least one user must em-
ploy maximally improper signaling, therefore the rate region
defined in (5) can be expressed as the union of two different
rate regions, R = R1

⋃
R2, where Ri is the achievable rate

region when κi = 1. The rate region R1 can be obtained by
solving

maximize
0≤{α,κ2}≤1

R2, (12a)

subject to R1 ≥ R̄1, (12b)

with κ1 = 1, and R̄1 = τ
2 log(1 + 2pg1

σ2
1

). Again, varying τ
between 0 and 1 we can obtain the boundary ofR1. The opti-
mal solution of (12) can be found in closed form as presented
in the following lemma.

Lemma 2. The optimal solution of (12), in which κ1 = 1, is
given by

α? = max(α0, αth), (13)

αth =
β1σ

2
1

2pg1
, α0 =

−a1 −
√
a2

1 − 4a2a0

2a2
, (14)

κ?2 =
β1γ1 − (β1 + 2)α?pg1

(1− α?)pg1β1
, (15)

3An exception is the extreme points (τ = 0 or τ = 1), where only one
user is active and thus proper signaling is optimal.
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Fig. 1. Rate region boundaries for g1 = 10 and g2 = 1.

with

a2 = −
[

2pg2(β1 + 1)

β1

]2

, a1 = −4pg2σ
2
2

(
β1 + 1

β1

)2

,

(16)

a0 =
g2

g1
γ1

[
g2

g1
γ1 + 2σ2

2

β1 + 1

β1

]
− γ2

2 . (17)

Proof. For κ1 = 1, (7) can be simplified to κ2 ≥ κ?2. Since
R2 is decreasing in κ2, we have that κ2 = κ?2 is optimal.
This expression returns a valid value of κ2 if it is equal to or
smaller than 1, which implies α ≥ αth. Taking κ2 = κ?2 and
plugging it into (4), with κ1 = 1, we obtain an expression for
R2, denoted as R2(α), that depends only on α, which yields
the condition

∂R2(α)

∂α
≥ 0 ⇔ α2a2 + αa1 + a0 ≥ 0, (18)

where a2, a1, and a0 are given by (16), (17). First, we ob-
serve that, since a2 ≤ 0, the function on the right-hand side
of (18) is concave. Second, we notice that a2 and a1 are
both equal to or smaller than zero, which, by the Descartes’
rule of signs, implies that the number of positive roots of
the aforementioned function is at most 1. With these con-
siderations, we conclude that R2(α) is increasing in α for
0 ≤ α ≤ max(α0, 0), where α0 is such that

α2
0a2 + α0a1 + a0 = 0, (19)

which yields the right-hand side of (14). Finally, since R2(α)
increases monotonically in the interval 0 ≤ α ≤ max(α0, 0),
and decreases in max(α0, 0) ≤ α ≤ 1, we obtain (13).

The second rate region,R2, can be obtained by solving

maximize
0≤{α,κ1}≤1

R1, (20a)

subject to R2 ≥ R̄2, (20b)
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Fig. 2. Rate region boundaries for g1 = 1 and g2 = 100.

with κ2 = 1, and R̄2 = τ
2 log(1 + 2pg2

σ2
2

). Since the above
problem is analogous to (12), its optimal solution is given by
Lemma 2, exchanging the roles of user 1 and user 2.

4. NUMERICAL RESULTS

We provide some simulation examples for p = 1, σ2
1 = σ2

2 =
1, and different channel gains g1, g2. Figure 1 shows the rate
regions for g1 = 10, g2 = 1, and different strategies, namely:
i) the capacity region achieved with superposition coding, ii)
the PGS rate region, along with its convex hull (achieved with
TS), and iii) the regions R1 and R2, which are obtained tak-
ing κ1 = 1 and κ2 = 1, respectively, along with their union
and convex hull. When TS is not allowed, IGS significantly
enlarges the PGS rate region. When PGS with TS is used,
there is still some improvement by using IGS. Specifically,
we observe that IGS enlarges the rate region for a subset of
rate pairs for which both users employ maximally IGS (both
users employ maximally IGS in the intersection between the
rate regions corresponding to κ1 = 1 and κ2 = 1), which in
turn implies an enlargement of the whole rate region if IGS
with TS is employed. Indeed, the enlargement over PGS with
TS is more prominent the higher the difference between both
channel gains is. This observation is illustrated in Fig. 2,
where g1 = 1 and g2 = 100. Since now user 2 is the strongest
user, the enlargement of the rate region over PGS with TS is
shifted to the right. Moreover, it can be observed that the en-
largement is more significant than in the previous example.
As a matter of fact, when both channel gains are equal, i.e.,
g1 = g2, the capacity region becomes that of PGS with TS.

Another interesting behavior is observed from the analy-
sis of the optimal power splitting factor α?. Figures 3 and
4 depict this quantity for the first and second example, re-
spectively. While for PGS the rate region boundary can be
parameterized by α, this is in general not the case for IGS.
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In particular, we observe that there are some values of α that
correspond to up to three different points of the IGS rate re-
gion boundary. Furthermore, the protrusion observed for low
values of R1 (R2) in Fig. 3 (Fig. 2) indicates that there is a
subset of rate pairs for which a higher R1 (R2) is achieved by
actually reducing the power allocated to this user.

5. CONCLUSION

We have derived a closed-form characterization of the rate
region boundary for the 2-user BC with IGS+TIN. We have
shown analytically that every boundary point is achieved
when at least one user employs maximally IGS. Further-
more, our numerical results show that the IGS rate region is
significantly larger than for PGS with and without TS.
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