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ABSTRACT

We tackle unsupervised anomaly detection (UAD), a problem of
detecting data that significantly differ from normal data. UAD is
typically solved by using density estimation. Recently, deep neu-
ral network (DNN)-based density estimators, such as Normalizing
Flows, have been attracting attention. However, one of their draw-
backs is the difficulty in adapting them to the change in the normal
data’s distribution. To address this difficulty, we propose AdaFlow,
a new DNN-based density estimator that can be easily adapted to the
change of the distribution. AdaFlow is a unified model of a Normal-
izing Flow and Adaptive Batch-Normalizations, a module that en-
ables DNNs to adapt to new distributions. AdaFlow can be adapted
to a new distribution by just conducting forward propagation once
per sample; hence, it can be used on devices that have limited com-
putational resources. We have confirmed the effectiveness of the
proposed model through an anomaly detection in a sound task. We
also propose a method of applying AdaFlow to the unpaired cross-
domain translation problem, in which one has to train a cross-domain
translation model with only unpaired samples. We have confirmed
that our model can be used for the cross-domain translation problem
through experiments on image datasets.

Index Terms— Deep learning, normalizing flow, domain adap-
tation, anomaly detection, and cross-domain translation.

1. INTRODUCTION

Anomaly detection, also known as outlier detection, is a problem
of detecting data that significantly differ from normal data [1–3].
Since such anomalies might indicate symptoms of mistakes or mali-
cious activities, their prompt detection may prevent such problems.
Therefore, anomaly detection has received much attention and been
applied for various purposes.

In this paper, we specifically consider unsupervised anomaly de-
tection (UAD), in which only normal data can be used for training
anomaly detection models. UAD is typically solved by first training
a normal model with normal data and then estimating the deviance
of each testing sample with the trained model. In the anomaly de-
tection field, many types of normal models have been investigated.
In the early studies, a Gaussian distribution was used [4, 5], and
recently, more flexible statistical models have been used such as a
Gaussian mixture model (GMM) [6, 7]. More recently, deep neural
network (DNN)-based methods have been investigated such as an
Auto-Encoder (AE) [8, 9], a Variational Auto-Encoder (VAE) [10–
12], and Generative Adversarial Networks (GAN) [13–15].

In the typical setting of UAD, one assumes that training and test-
ing data are sampled from the same distribution. However, this as-
sumption does not hold in certain practical scenarios. Let us consider
the anomaly detection problem on facility equipments. Typically,

such equipments have various operation patterns, and the environ-
mental noise patterns around them may change due to certain factors
such as seasons and the weather. In this case, the above assump-
tion does not always hold; hence, simply applying existing normal
models to such problems may significantly decrease the anomaly de-
tection accuracy. A naı̈ve method one can use to avoid this is to adapt
normal models to a new distribution by conducting fine-tuning with
newly-collected normal data. However, fine-tuning requires high
memory and computational costs and cannot be easily conducted
with devices installed in facility equipments that typically have only
limited computational resources. Therefore, a more efficient adapta-
tion method is needed.

To address this problem, we propose a new density esti-
mator named AdaFlow, a unified model of Normalizing Flows
(NFs) [16, 17], a powerful DNN-based density estimator, and the
Adaptive Batch Normalization (AdaBN) [18], a module that enables
DNNs to handle different domains’ data. AdaBN alleviates the
difference between domains by scaling and shifting each domain’s
input data so that each domain’s mean and variance are zero and one,
respectively. Since AdaBN can be adapted to a new domain by just
adjusting its statistics with the domain’s data, the adaptation step of
AdaFlow can be done by just conducting forward-propagation only
once per sample. Therefore, AdaFlow can be used on devices that
have limited computational resources.

We also propose a method of applying AdaFlow to the unpaired
cross-domain translation problem, in which one has to train a cross-
domain translation model with only unpaired data. We show the ef-
fectiveness of using AdaFlow for this problem through cross-domain
translation experiments on image datasets.

2. RELATED WORK

2.1. Unsupervised anomaly detection

In UAD, the deviation between a normal model and observation is
computed; the deviation is often called the “anomaly score”. One
way of computing anomaly scores is a density estimation-based ap-
proach. This approach first trains a density estimator qθ(·), such as a
Gaussian distribution function, with normal data, and then computes
the negative log-likelihood of each testing data x ∈ RD with qθ(·).
In this approach, its negative log-likelihood is used as its anomaly
score A(x, θ), i.e.,

A(x, θ) = − ln qθ(x). (1)

Then, x is determined to be anomalous when the anomaly score
exceeds a pre-defined threshold φ:

H(x, φ) =

{
0 (Normal) A(x, θ) < φ

1 (Anomaly) A(x, θ) ≥ φ
. (2)
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Recently, deep learning has also been investigated for defin-
ing normal models for UAD. Several studies on deep-learning-based
UAD employed an AE [8, 9] (or a VAE [11, 12]). The AE-based
anomaly detection framework defines the anomaly score as follows:

A(x, θ) = ‖x−DθD (EθE (x))‖2, (3)

where ‖·‖ denotes theL2 norm, E andD are the encoder and decoder
of the AE, and θE and θD are its parameters, namely θ = {θE , θD}.
Then, θ is trained to minimize the anomaly scores of normal data as
follows:

θ ← arg min
θ

1

N

N∑
n=1

A(xn, θ), (4)

where xn is the n-th training sample andN is the number of training
samples.

Although it has been empirically shown that anomaly detection
can be addressed by AE-based anomaly detection, one of its draw-
backs is that there is no guarantee that minimizing Eq. (4) encour-
ages anomaly scores of normal data to be less than those of anomaly
data, because anomaly scores of anomaly data are not considered
in Eq. (4). In constrast, in the density estimation-based approach,
minimizing NLLs of normal data encourages to maximize NLLs of
the other data, including anomal data, since the integral value of
the likelihood in the input space is always 1. Therefore, instead of
using the AE-based anomaly detection approach, we adopt the den-
sity estimation-based approach. Specifically, in this paper, we adopt
a Normalizing Flow (NF), a DNN-based flexible density estimator.
We explain its details in Section 3.

2.2. Domain adaptation on DNN-based density estimator

Although a DNN is a powerful tool for anomaly score computation,
it may be problematic for practical use. One problem occurs when
adjusting the normal model to a new domain. The distribution of
normal data often varies due to aging of the target and/or change in
environmental noise. Therefore, we need to adapt the normal model
to such fluctuations. Let us formulate this problem. Suppose that we
have a normal model qθ trained on K ≥ 1 dataset(s) collected in in-
dividual domains. When the distribution changes, we need to adapt
qθ to the new domain ((K + 1)-th domain) to obtain a new normal
model q′θ . This problem can be regarded as an analogy of domain
adaptation [19]. Although several domain adaptation methods have
been investigated [20–22], most require iterative optimization and
huge memory, and such methods cannot be easily used with devices
installed in most practical conditions, which typically have limited
computational resources. Therefore, in terms of the computational
cost and required memory, a more efficient adaptation method is
needed.

3. PROPOSED METHOD

3.1. Normalizing Flow

We adopt a Normalizing Flow (NF) as a density estimator. NF rep-
resents a probabilistic density by transforming a base probabilistic
density function q0(z(0)) with a series of M invertible projections
{fm}Mm=1 with each parameter {θm}Mm=1. In NF, x is regarded as a
transformed variable with {fm}Mm=1 as follows:

x = zM = fM,θM ◦ · · · ◦ f1,θ1(z
(0)); (5)

thus, z(0) can be obtained by the inverse transform of (5). Fol-
lowing prior works [16, 17], we employ a Gaussian distribution

(a) Pre-training

(b) Adaptation

Domain 1

Domain 2

Domain 3
Stat. calc.

(c) Cross-domain transition

(domain 1)

(domain 2)
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Fig. 1. Simplified concept of AdaFlow; (1) pre-training, (2) adapta-
tion, and (3) cross-domain transition. In pre-training, all parameters
{θm}3m=1 are trained with K = 2 domain datasets. For adapta-
tion, BN statistics of second projection f2 are computed from third
domain dataset. For cross-domain transition, BN statistics of input
domain is used for inverse projection, and that of target domain is
used for forward projection.

N (z(0);0, I) for q0(z(0)). Then, the likelihood of the given sample
x is obtained by repeatedly applying the rule for change of variables
as follows:

qθ(x) = q0(z
(0))

M∏
m=1

∣∣∣∣ ∂fm,θm∂z(m−1)

∣∣∣∣−1

, (6)

Thus, the anomaly score computed by NF can be expressed as

A(x, θ) = − ln q0(z
(0))−

M∑
m=1

ln

∣∣∣∣ ∂fm,θm∂z(m−1)

∣∣∣∣−1

. (7)

Parameters θ = {θm}Mm=1 can be trained by minimizing the
anomaly scores as follows:

θ ← arg min
θ

K∑
k=1

1

Nk

Nk∑
n=1

A(xn,k, θ), (8)

where xn,k and Nk are the n-th training sample and the number of
training samples of the k-th dataset, respectively.

3.2. AdaFlow

We consider domain adaptation for NF. A naı̈ve method of adapting
NF to the (K + 1)-th dataset is to fine-tune all {θm}Mm=1 with that
dataset. However, fine-tuning requires high memory and computa-
tional costs and cannot be easily conducted with devices installed



in facility equipments that typically have only limited computational
resources. Therefore, a more efficient adaptation method is needed.

To address this problem, we propose AdaFlow, a Normalizing
Flow-based density estimator that utilizes Adaptive Batch Normal-
izations (AdaBNs). An AdaBN converts data as follows:

f−1
m,θm

(z) = diag(γ)diag(σk)−
1
2 (z − µk)) + β, (9)

where µk ∈ RD and σk ∈ RD are vectors of mean and vari-
ance computed with the data in the k-th domain, respectively, and
γ ∈ RD and β ∈ RD are learnable parameters shared in all do-
mains. The function diag(λ) denotes an operator that converts λ
into a diagonal matrix of which (i, j)-th entry is (λ)i if i = j, oth-
erwise 0. Note that µk and σk are individually calculated for each
domain, whereas same γ and β are used for all K domains. By
training the whole projections in this manner, µk and σk alleviate
the difference up to the second-order moment for each domain in the
hidden layers. In addition, adapting AdaFlow to the given (K+1)-th
domain can be achieved by just computing AdaBNs’ statisticsµK+1

and σK+1 with data sampled from that domain.
We summarize the overall procedure of pre-training and adapt-

ing AdaFlow as follows and in Fig 1: (i) pre-train AdaFlow projec-
tions with K datasets by (8), (ii) adapt the statistics of AdaBNs µ′

and σ′ with the (K + 1)-th dataset.

3.3. Examples of projection implementations

We next explain projections that can be used for implementing
AdaFlow. If each projection is easy to invert and the determinant
of its Jacobian is easy to compute, exact density estimation at each
data point can be easily conducted. We introduce two projections
that satisfy the above requirements.

Linear Transformation: Linear transformation can be used as
a projection for NFs as follows:

f−1
m,θm

(z) =Wz + b, (10)

where W ∈ RD×D and b ∈ RD is a weight matrix and a bias
vector, respectively. The determinant of the Jacobian of this pro-
jection is |W |−1 = 1/|W |. Since its computational complex-
ity is O(D3), we reparametrize W as a LDU decomposition form
W = Ldiag(d)U , where L and U is a lower and upper triangu-
lar matrix of which all diagonal elements are one, respectively, and
d ∈ RD . Since |U | = |L| = 1 and |diag(d)| =

∏D
i (d)i, the

computational complexity of the determinant of the Jacobian can be
reduced to O(D) by using this reparametrization form.

Leaky ReLU: A Leaky Rectified Linear Unit (Leaky ReLU) is
a module used for DNNs, defined as follows:

f−1
m,θm

(z) = max(z, αz), (11)

where α ∈ (0, 1) is a hyper parameter, and max(λ(1),λ(2)) is an
operator that outputs element-wise maximum of λ(1) and λ(2), re-
spectively. Since Leaky ReLU is easy to invert and the determinant
of its Jacobian is easy to compute, it can also be used as a projec-
tion for NFs. The determinant of its Jacobian is α−τ , where τ is the
number of elements that are less than 0.

4. EXPERIMENTS

4.1. Experimental Settings

4.1.1. Dataset

To verify the effectiveness of AdaFlow, we conducted experiments
on an anomaly detection in sound (ADS) task. For the training and

(a) 2.0 m

2.
0 

m1.
0 

m

1.0 m

6.6 m

4.
64

 m

(b)

: speaker

: car model

Fig. 2. Photograph of toy car (left) and arrangement of toy car and
loudspeakers for simulating environmental noise (right).

test datasets, we constructed a toy-car-running sound dataset in a
simulated room of a factory, as shown in Fig. 2. The toy cars were
placed at in the room, and two loudspeakers were arranged around a
toy car to emit factory noise. For the target and noise sound, we in-
dividually collected four types of car-running sounds and four types
of factory noise data emitted from two loudspeakers. Then, K = 9
types of pre-training datasets were generated by mixing three of the
four types of car sounds and three environmental sounds at a signal-
to-noise (SNR) of 0 dB. The adaptation and test datasets were gen-
erated by mixing the remaining car sound and environmental noise
at an SNR of 0 dB. All sounds were recorded at a sampling rate of
16 kHz.

Since it is difficult to generate various types of anomalous
sounds, we created synthetic anomalous sounds in the same manner
as in a previous study [9]. A part of the training dataset for the
task of DCASE-2016 [23, 24] was used as anomalous sounds; 140
sounds including slamming doors , knocking at doors , keys put
on a table, keystrokes on a keyboard, drawers being opened, pages
being turned, and phones ringing) were selected. To synthesize the
test data, the anomalous sounds were mixed with normal sounds at
anomaly-to-normal power ratios (ANRs) of -20 dB. We used the
area under the ROC curve (AUROC) as an evaluation metric. We
also used the negative log-likelihood (NLL). Note that the higher
AUROC, the better the model, whereas the lower NLL, the better
the model.

The frame size of the discrete Fourier transformation was 512
points, and the frame was shifted every 256 samples. The input
vectors were the log amplitude spectrum of 64-dimensional Mel-
filterbank outputs with a context-window size of 5. Thus, the di-
mension of input vector x was D = 704.

4.1.2. Comparison methods

We compared the following models.

• AdaFlow: each model is first trained with data sampled from
the nine pre-training datasets and then adapted with data sam-
pled from the target dataset. The architecture is a sequence of
linear transformation, AdaBN, leaky ReLU, linear transfor-
mation, and AdaBN. For adapting this model, the number of
samples used was set to N = 10, 100, 1000.

• Normalizing Flow: each model is trained with data sampled
from the nine pre-training datasets (the target dataset is not
included). The architecture is a sequence of linear transfor-
mation, BN, leaky ReLU, linear transformation, and BN.

• Normalizing Flow: a model is first trained in the same man-
ner as above, and then fine-tuned with data sampled from the
target dataset. The architecture is the same as above. For
fine-tuning this model, the number of samples used was set to
N = 1000.



Table 1. Results from anomaly detection experiments.
Method NLL AUROC
(Chance Rate) N/A 0.5
Norm. Flow (Trained with 9 other datasets) 53.9 0.835
Auto-encoder (Trained with 9 other datasets) N/A 0.805
AdaFlow (Adapted with 10 samples) 92.4 0.816
AdaFlow (Adapted with 100 samples) 21.4 0.875
AdaFlow (Adapted with 1000 samples) 15.3 0.882
Norm. Flow (Fine-tuned with 1000 samples) 13.9 0.887

Table 2. Computational Time for adapting each model to the target
dataset. We ran these experiments with Intel Xenon CPU (2.30GHz)
on a single thread.

Method Time [sec.]
Norm. Flow (Fine-tuned with 1000 samples) 3.23
AdaFlow (Adapted with 1000 samples) 0.09

• Auto-encoder: each model is trained with data sampled from
the nine pre-training datasets. Since this model cannot be
used for density estimation, we only evaluate AUROC. The
architecture is a sequence of linear transformation (the output
dimension is 128), ReLU, linear transformation (the output
dimension is 64), ReLU, linear transformation (the output di-
mension is 128), ReLU, and linear transformation (the output
dimension is 704).

4.2. Objective evaluations

The experimental results are shown in Tables 1 and 2. From these
results, we observed the following things:

• Both Normalizing Flows and AdaFlow outperformed Auto-
encoder. This observation indicates the superiority of Nor-
malizing Flows over Auto-encoder in anomaly detection.

• AdaFlow outperformed Normalizing Flow trained with nine
pre-training datasets, even when it was trained with 10 sam-
ples. This indicates the superiority of AdaFlow over non-fine-
tuned Normalizing Flow.

• The larger the amount of data used for adapting AdaFlow, the
better both the metrics were. This indicates that the amount
of data used for adaptation should be as large as possible.

• AdaFlow can be adapted to a new dataset about 36 times
faster than fine-tuning-based Normalizing Flow adaptation,
with slight accuracy decrease. This indicates that AdaFlow
is equally accurate yet much more efficient than fine-tuning-
based adaptation.

5. APPLICATION TO UNPAIRED CROSS-DOMAIN
TRANSLATION

Though AdaFlow was originally designed for conducting density es-
timation on multiple domains, we demonstrate that it can be also
used for the unpaired cross-domain translation problem, in which
one has to train a cross-domain translation model without paired
data. We propose the unpaired cross-domain translation framework
with AdaFlow in Fig. 1 (c). Given a trained AdaFlow model, data
belonging to one domain is first projected to the latent space with
that domain’s AdaBN statistics, and after that the obtained latent
variable is reprojected to the data space with the target domain’s Ad-
aBN statistics.

(a) Photo examples

(c) Photo-to-painting

(b) Painting examples

(d) Painting-to-photo

Fig. 3. Result examples of unpaired cross-domain translation. (a)
training data examples of photos, (b) training data examples of paint-
ings, (c) translation result examples of photo to painting, and (d)
translation result examples of painting to photo. In both (c) and (d),
input images are shown on the left side, and output images are shown
on the right side. Best viewed in monitor.

We used two datasets for these experiments: the first one con-
sisted of 400 photos, and the second one consisted of 400 paintings
drawn by Van Goph. Examples are shown in Fig. 3 (a) and (b). As
an architecture for AdaFlow, we employed a variant of Glow [25], in
which activation normalization layers are replaced with AdaBN.

The cross-domain translation results are shown in Fig. 3 (c, d).
We can see that unpaired cross-domain translation can be achieved
via AdaFlow, even when it is trained without paired data. These
results indicate that AdaFlow can be a density-based alternative to
other methods for this problem, such as CycleGAN [26].

6. CONCLUSIONS

We proposed a new DNN-based density estimator called AdaFlow; a
unified model of the NF and AdaBN. Since AdaFlow can be adapted
to a new domain by just adjusting the statistics used in AdaBNs,
we can avoid iterative parameter update for adaptation, unlike fine-
tuning. Therefore, a fast and low-computational cost domain adap-
tation is achieved. We confirmed the effectiveness of the proposed
method through an anomaly detection in a sound task. We also pro-
posed a method of applying AdaFlow to the unpaired cross-domain
translation problem. We demonstrated the effectiveness of using
AdaFlow for the task through cross-domain translation experiments
on photo and painting datasets.

AdaFlow has the potential to resolve some problems of other im-
portant tasks. One possible example is source enhancement [27–29].
It is known that the performance of DNN-based source enhancement
is degraded when target/noise characteristics of test data are different
from those of training data. This problem is also domain-adaptation
problem, thus it might be resolved by using AdaFlow. Therefore, in
the future, we plan to apply AdaFlow to other tasks including source
enhancement.
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