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ABSTRACT
Tensor ring (TR) decomposition has been successfully used
to obtain the state-of-the-art performance in the visual data
completion problem. However, the existing TR-based com-
pletion methods are severely non-convex and computation-
ally demanding. In addition, the determination of the opti-
mal TR rank is a tough work in practice. To overcome these
drawbacks, we first introduce a class of new tensor nuclear
norms by using tensor circular unfolding. Then we theoreti-
cally establish connection between the rank of the circularly-
unfolded matrices and the TR ranks. We also develop an ef-
ficient tensor completion algorithm by minimizing the pro-
posed tensor nuclear norm. Extensive experimental results
demonstrate that our proposed tensor completion method out-
performs the conventional tensor completion methods in the
image/video in-painting problem with striped missing values.

Index Terms— Tensor completion, tensor ring decompo-
sition, nuclear norm, image in-painting.

1. INTRODUCTION

Low rank tensor completion (LRTC) problem aims to recover
the incomplete tensor from the observed entries by assuming
different low-rank tensor structures, and it has attracted a lot
of attentions in the past decades [1–5]. Most recently, Zhao
et al. proposed tensor ring decomposition [6], which achieves
the state-of-the-art performance in the LRTC problem [3–5].

However, the drawbacks limit the application of the exist-
ing TR-based methods in practice. One of the drawbacks is
that the existing TR-based methods are quite time-consuming.
For example, TR-ALS [3] has the computational complex-
ity of O(PNR4IN + NR6) and the one of tensor ring low-
rank factors (TRLRF) [5] equals O(NR2IN +NR6), where
N denotes the order of the tensor, I denotes the dimension
of each mode, R represents the rank of the model and P is
a constant between 0 and 1. It can be seen that the com-
putational cost of the two methods increase with the sixth
power of TR rank R. It implies that a large TR-rank cho-
sen in practice leads to terribly low efficiency, and sometimes
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Fig. 1: Illustration of TR representation of a N th-order ten-
sor X ∈ RI1×···×IN and its tensor circular unfolding’s. The
nodes Gk ∈ Rrk−1×Ik×rk for k = 1 · · ·N [6] represent ten-
sors whose order is denoted by the number of edges. Each
dimension of the tensor is specified by the number beside the
edges. The connection line between two nodes denotes the
multi-linear product operation of these two nodes along a spe-
cific mode. X<k,2> represents the tensor circular unfolding
along modes k − 1 and k, specified by a red arc. Note that
tensor circular unfolding’s are obtained by circularly shifting
along the tensor ring.

with the memory-exploration problem. Though tensor ring
weighted optimization (TR-WOPT) [4] applies gradient de-
scent algorithm to find the latent core tensors, the convergence
rate of this method is low. Beside the computational complex-
ity problem, the determination of the optimal TR rank is also
a tough work in the completion problem. It is because that
TR rank is defined as a vector, whose dimension equals to the
order of the tensor. This fact makes that the computational
complexity for rank selection exponentially increases with the
dimension of the rank by using cross validation. Furthermore,
TR decomposition is non-convex, so there is no theoretical
guarantee to obtain the global minimum solution.

To overcome these drawbacks, we develop a novel convex
completion method by minimizing tensor ring nuclear norm
defined in this paper. Specifically, we first define a new cir-
cular unfolding operation on higher-order tensor, and theo-
retically prove that ranks of the circularly-unfolded matrices
bound their corresponding TR rank. After that, the tensor ring
nuclear norm is defined as a sum of the matrix nuclear norm
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of the circularly-unfolded matrices. As a convex surrogate
of TR rank, the proposed completion method not only has
lower computational complexity than the conventional TR-
based methods, but also avoids choosing the optimal TR rank
manually. To sum up, our contributions of this paper are listed
below:

• We theoretically prove the relationship between the
TR-rank and the rank of the circularly-unfolded ma-
trix.

• To our best knowledge, this is the first paper to intro-
duce tensor ring nuclear norm, and it is demonstrated
to obtain the state-of-the-art performance in the image
and video completion problem.

• An alternating direction method of multipliers (ADMM)
based algorithm is developed to optimize the proposed
model.

2. TENSOR RING NUCLEAR NORM

To introduce the TR nuclear norm formulation, we first define
the tensor circular unfolding and then theoretically reveal its
connection to TR rank.

Definition 1. (Tensor circular unfolding) LetX ∈ RI1×···×IN
be a N th-order tensor, its tensor circular unfolding is a ma-
trix, denoted by X<k,d> of size ItIt+1 . . . Ik × Ik+1 . . . It−1,
whose elements are defined by

X<k,d>(itit+1 . . . ik, ik+1 . . . it−1) = X (i1, i2, . . . , iN ) (1)

where

t =

{
k − d+ 1, d ≤ k;
k − d+ 1 +N otherwise. (2)

d continuous indices (including kth index) enumerate the
rows of X<k,d>, and the rest N − d indices for its columns.
d < N is the positive integer and named step-length in our
paper.

Theorem 1. Assume X ∈ RI1×...IN isN th-order tensor with
[r1, r2, . . . , rN ] TR-format, then for each unfolding matrix
X<k,d>,

rank (X<k,d>) ≤ rkrt−1, (3)

where r0 = rN .

Proof. The tensorX with TR-format is expressed in element-
wise form given by

X (i1, i2, . . . , iN ) = Tr {G1(i1)G2(i2) . . .GN (iN )} . (4)

Gk(ik) denotes the ikth lateral slice matrix of the latent tensor
Gk, which is of size rk−1× rk. By employing the property of
the trace operation, the element of tensor X can be expressed
in tensor circular unfolding format, i.e.,

X<k,d>(itit+1 . . . , ik, ik+1 . . . it−1)

= Tr{Gt(it) . . .Gk(ik)Gk+1(ik+1) . . .Gt−1(it−1)}
= Tr{A(itit+1 . . . ik)B(ik+1 . . . it−1)}, (5)

where A ∈ Rrt−1×ItIt+1...Ik×rk with A(ItIt+1 . . . Ik) =
Gt(it)Gt+1(it+1) . . .Gk(ik), B ∈ Rrk×Ik+1...It−1×rt−1

with B(Ik+1 . . . It−1) = Gk+1(ik+1) . . .Gt−1(it−1).
We can also rewrite (5) in the index form, which is

X<k,d>(itit+1 . . . , ik, ik+1 . . . it−1)

=
∑rk
αk=1

∑rt−1

αt−1=1A(αt−1, itit+1 . . . ik, αk)

B(αk, ik+1 . . . it−1, αt−1)

=
∑rkrt−1

αkαt−1=1 Â(itit+1 . . . ik, αkαt−1)

B̂(ik+1 . . . it−1, αkαt−1) (6)

Therefore, we can get rank (X<k,d>) ≤ rkrt−1.

Definition 2. (TR nuclear norm) Assume the tensor X with
TR-form, its TR nuclear norm is defined by

Qtr =

N∑
k=1

αk‖X<k,d>‖∗, (7)

where ‖.‖∗ is defined as the sum of singular values of a ma-
trix.

Note that TR nuclear norm is combined by a series of ten-
sor circular folding’s {X<k,d>}Nk=1 of a tensor. In the case of
d = 2, {X<k,2>}Nk=1 is obtained by circularly shifting along
the tensor ring, shown in Fig. 1.

3. TENSOR RING NUCLEAR NORM
MINIMIZATION

By utilizing the relationship between the TR-rank and the
rank of the circularly-unfolded matrices, a novel convex
model named TR nuclear norm minimization (TRNNM) is
proposed for LRTC problem, i.e.,

min
X

:
∑N
k=1 αk‖X<k,d>‖∗

s.t. : XΩ = TΩ (8)

where Ω denotes the index set of observed entries of T .
The problem (8) is difficult to solve due to {X<k,d>}Nk=1

share the same entries and can’t be optimized independently.
To simplify the optimization, we introduce additional tensors
{M(k)}Nk=1 and thus obtain the equivalent formulation:

min
X ,M(k)

:
∑N
k=1 αk‖M

(k)
<k,d>‖∗

s.t. : X =M(k), k = 1, . . . , N

XΩ = TΩ (9)



Algorithm 1 The TRNNM algorithm.

Require: Missing entry zero filled tensor data T ∈
RI1×···×IN with observed index set Ω,

Parameters: {αk}Nk=1, ρ = 1e− 5, tol = 1e− 5 .
1: Initialize: zero filled X ,M(k) withM(k)

Ω = XΩ = TΩ,
Y(k) = 0.

2: for t = 1 to tmax do
3: X̂ = X
4: for k = 1 to N do
5: M(k) ← (13)
6: end for
7: X ← (16)
8: for k = 1 to N do
9: Y(k) ← (17)

10: end for
11: if ‖X − X̂‖F /‖X̂ ‖F ≤ tol then
12: break
13: end if
14: end for

ADMM is developed to solve problem (9) due to its ef-
ficient in solving optimization problem with multiple nons-
mooth terms in the objective function [7]. We define the aug-
mented Lagrangian function as follows:

L(X ,M(1), . . . ,M(N),Y(1), . . . ,Y(N))

=

N∑
k

αk‖M(k)
<k,d>‖∗+ < X −M(k),Y(k) >

+
ρ

2
‖M(k) −X‖2F

s.t. XΩ = TΩ

(10)

According to the framework of ADMM, we can update
M(k)’s, X and Y(k)’s as follows.

Update M(k). It is easy to note that problem (10) can be
converted to an equivalent formulation:

L(X ,M(1), . . . ,M(N),Y(1), . . . ,Y(N))

=

N∑
k

αk‖M(k)
<k,d>‖∗ +

ρ

2
‖M(k) −X − 1

ρ
Y(k)‖2F

− 1

2ρ
‖Y(k)‖2F

(11)

To optimizeM(k) is equivalent to solve the subproblem:

min
M(k)

:

N∑
k

αk‖M(k)
<k,d>‖∗ +

ρ

2
‖M(k) −X − 1

ρ
Y(k)‖2F (12)

The above problem has been proven to lead to a closed
form in [8–10]. Thus the optimalM(k) can be given by:

M(k) = foldk

[
Dτ

(
X<k,d> +

1

ρ
Y<k,d>

)]
(13)

where τ = αk

ρ and Dτ (·) denotes the thresholding SVD op-
eration [9]. If the SVD of A = USVT ,

Dτ (A) = Umax {S− τI, 0}VT (14)

where I is an identity matrix with the same size of S.
Update X . The optimal X with all other variables fixed is
given by solving the following subproblem of (11):

min
X

: ρ
2‖M

(k) −X − 1
ρY

(k)‖2F
s.t. : XΩ = TΩ (15)

It is easy to check that the solution of (15) is given by:

Xi1,...,iN =

{ (
1
N

∑N
k=1Z(k)

)
i1,...,iN

(i1, . . . , iN ) /∈ Ω;

Mi1,...,iN (i1, . . . , iN ) ∈ Ω.
(16)

where Z(k) =M(k) − 1
ρY

(k).

Update Y(k). The Lagrangian multiplier Y(k) is updated by:

Y(k) = Y(k) + ρ(X −M(k)) (17)

The TRNNM algorithm is summarized in Algorithm 1.

3.1. Computational complexity of algorithm

For a tensor X ∈ RI1×···×IN with Ik = I, k = 1, . . . , N,
the computational complexity of our proposed method is
O(NIN+d) where d ≤ N/2. In contrast to TRALS and
TRLRF with computational complexity of O(PNR4IN +
NR6) and O(NR2IN + NR6) respectively, the computa-
tional complexity of our method is may much smaller when
I ≤ R. In practice, as shown in [3,5], the suitable TR-rank R
is always much higher than the dimension I in the high-order
form of visual data, which is also found in our experiment.
In addition, due to the immense TR-rank selection possibil-
ities, the computational complexity of TR-ALS and TRLRF
exponentially increases by using cross validation.

Original mr = 0.3 FBCP HaLRTC

SiLRTC-TT TR-ALS tSVD TRNNM
Fig. 2: Lena image with 30% of stripes missing and its
restorations by completion methods.

4. EXPERIMENTS

To validate our proposed method TRNNM, both image and
video completion are used to compare our method and state-



Original mr = 0.7 FBCP HaLRTC SiLRTC-TT tSVD TR-ALS TRNNM
Fig. 3: The 10th and 20th frames (from top to bottom) of the ocean video with 70% of stripes missing and its restorations by
tensor completion methods.

0.3 0.35 0.4 0.45 0.5 0.55 0.6

mr

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
S

E

TRNNM(d=1)
TRNNM(d=2)
TRNNM(d=3)
TRNNM(d=4)

(a)

0.3 0.35 0.4 0.45 0.5 0.55 0.6

mr

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
S

E

FBCP
HaLRTC
SiLRTC-TT
tSVD
TR-ALS
TRNNM(d=4)

(b)

Fig. 4: RSE under varying ratio of stripes missing from Lena
image. (a) is the investigation of TRNNM with various d, and
(b) is the comparison of TRNNM with other methods.

Table 1: RSE and runtime (seconds) for 80%, 70% and 60%
of stripes randomly missing from the ocean video.

mr = 0.8 mr = 0.7 mr = 0.6

RSE RunTime RSE RunTime RSE RunTime

FBCP 0.207 298.41 0.107 302.40 0.099 227.91

HaLRTC 0.207 41.65 0.125 41.43 0.093 32.77

SiLRTC-TT 0.303 81.47 0.287 43.48 0.268 40.63

tSVD 0.461 506.71 0.286 498.24 0.126 453.92

TR-ALS 0.116 568.42 0.113 851.37 0.103 1.54e3

TRNNM 0.098 235.52 0.066 233.71 0.048 215.01

of-the-art methods, i.e., FBCP [11], HaLRTC [1], SiLRTC-
TT [12], tSVD [13], TR-ALS [3]. We conduct each exper-
iment 10 times and record the average relative square error
(RSE) and its runtime, where RSE = ‖X − T ‖F /‖T ‖F .

4.1. Image Completion

In this section, Lena image is used to evaluate the perfor-
mance of TRNNM and its compared methods. The image
is initially presented by 3rd-order tensor with size of 256 ×
256 × 3. We directly reshape the image into 9th-order ten-
sor with size of 4 × · · · × 4 × 3 for the methods assuming
the data with TT/TR structure, i.e. SiLRTC-TT, TR-ALS and
TRNNM, due to the high-order reshape operation is often
used to improve the performance in classification [14] and
completions [3, 12, 15]. We conduct experiments under vary-
ing ratio of stripes missing from the image. In the case of
N th-order tensor, the TRNNM with d = s is equivalent to
that with d = N − s, we thus only consider the step-length d
varying from 1 to

⌊
N
2

⌋
where b.c denotes the floor operation.

Fig. 4(a) shows that our proposed method obtains bet-

ter results as step-length increases from 1 to 4, which indi-
cates that closer to

⌊
N
2

⌋
the step-length d, stronger the abil-

ity of TRNNM to capture information. Seen from Fig. 4(b),
TRNNM with d = 4 significantly outperforms other methods
in RSE under various missing ratios. The image restorations
are shown in Fig. 2, which demonstrates that TRNNM with
d = 4 performs best on estimating the stripes missing values.

Due to the superiority of TRNNM when step-length d =⌊
N
2

⌋
, we set d =

⌊
N
2

⌋
in default in our later experiments.

4.2. Video Completion

The ocean video [2] with size 112×160×3×32 is used in this
experiment. As done before, the ocean video is reshaped into
7th-order tensor of size 16×7×16×10×3×8×4 for TT/TR-
based methods. We conduct experiment under varying ratio
of stripes randomly missing from the video.

Table 1 shows that TRNNM significantly performs bet-
ter than other methods in RSE under our considered missing
ratios, i.e. mr = 0.6, 0.7, 0.8, with an acceptable time-cost.
TR-ALS obtains rather well performance following TRNNM,
however with significantly time-cost, which is not applicable
in practice. For the case ofmr = 0.7, the restorations of some
frames are shown in Fig. 3. Observe that TRNNM obtains
the detail information of the frames with a better resolution,
which demonstrates the superiority of TRNNM on capturing
the information of the video with stripes missing.

5. CONCLUSIONS

We propose a convex completion method by minimizing ten-
sor ring nuclear norm which is first introduced in our paper.
The proposed method not only has lower computational com-
plexity than the previous TR-based methods, but also avoids
choosing the optimal TR rank. Extensive experimental re-
sults demonstrate that the proposed method outperforms the
conventional tensor completion methods in image/video com-
pletion problem.
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