
UTTERANCE-LEVEL AGGREGATION FOR SPEAKER RECOGNITION IN THE WILD

Weidi Xie1, Arsha Nagrani1, Joon Son Chung1,2 and Andrew Zisserman1

1Visual Geometry Group, Department of Engineering Science, University of Oxford, UK
2Naver Corporation, South Korea

{weidi, arsha, joon, az}@robots.ox.ac.uk

ABSTRACT
The objective of this paper is speaker recognition ‘in the wild’
– where utterances may be of variable length and also con-
tain irrelevant signals. Crucial elements in the design of deep
networks for this task are the type of trunk (frame level) net-
work, and the method of temporal aggregation. We propose
a powerful speaker recognition deep network, using a ‘thin-
ResNet’ trunk architecture, and a dictionary-based NetVLAD
or GhostVLAD layer to aggregate features across time, that
can be trained end-to-end. We show that our network achieves
state of the art performance by a significant margin on the
VoxCeleb1 test set for speaker recognition, whilst requiring
fewer parameters than previous methods. We also investigate
the effect of utterance length on performance, and conclude
that for ‘in the wild’ data, a longer length is beneficial.

Index Terms— speaker recognition, speaker verification,
speech, deep learning, CNNs

1. INTRODUCTION

Speaker recognition ‘in the wild’ has received an increas-
ing amount of interest recently due to the availability of free
large-scale datasets [1, 2, 3], and the easy accessibility of deep
learning frameworks [4, 5, 6]. For speaker recognition, the
goal is to condense information into a single utterance-level
representation, unlike speech recognition where frame-level
representations are desired. Obtaining a good utterance level
representation becomes particularly important for speech ob-
tained under noisy and unconstrained conditions, where irrel-
evant parts of the signal must be filtered out. Therefore, a key
area of research in deep learning for speaker recognition is to
investigate how to effectively aggregate frame-level charac-
teristics into utterance-level speaker representations.

Earlier deep neural network (DNN) based speaker recog-
nition systems have naı̈vely used pooling methods that have
been successful for visual recognition tasks, such as average
pooling [2, 3, 7, 8] or fully connected layers [9, 10] to con-
dense frame-level information into utterance-level representa-
tions. Although such methods serve the purpose of aggregat-
ing frame-level information into a single representation whilst

http://www.robots.ox.ac.uk/˜vgg/research/speakerID

still allowing back-propagation, the aggregation is not content
dependent, so they are not able to consider which parts of the
input signal contain the most relevant information.

On the other hand, traditional methods for speaker and
language identification such as i-vector systems have ex-
plored the use of statistical or dictionary-based methods for
aggregation. A number of recent works have proposed to
bring similar methods to deep speaker recognition [11, 12,
13, 14, 15] (described in Sec. 1.1). Based on these works,
we propose to marry the best of both Convolutional Neu-
ral Networks (henceforth, CNNs) and a dictionary-based
NetVLAD [16] layer, where the former is known for cap-
turing local patterns, and the latter can be discriminatively
trained for aggregating information into a fixed-sized de-
scriptor from an input of arbitrary size, such that the final
representation of the utterance is unaffected by irrelevant
information.

We make the following contributions: (i) We propose
a powerful speaker recognition deep network, based on a
NetVLAD [16] or GhostVLAD [17] layer that is used to
aggregate ‘thin-ResNet’ architecture frame features; (ii) The
entire network is trained end-to-end using a large margin
softmax loss on the large-scale VoxCeleb2 [3] dataset, and
achieves a significant improvement over the current state-
of-the-art verification performance on VoxCeleb1, despite
using fewer parameters than the current state-of-the-art ar-
chitectures [3, 13]; and, (iii) We analyse the effect of input
segment length on performance, and conclude that for ‘in the
wild’ sequences having longer utterances (4s or more) is a
significant improvement over shorter segments.

1.1. Related works

End-to-end deep learning based systems for speaker recogni-
tion usually follow a similar three-stage pipeline: (i) frame
level feature extraction using a deep neural network (DNN);
(ii) temporal aggregation of frame level features; and (iii) op-
timisation of a classification loss. In the following, we review
the three components in turn.

The trunk DNN architecture used is often either a 2D
CNN with convolutions in both the time and frequency do-
main [2, 3, 15, 18, 19, 20], or a 1D CNN with convolutions

ar
X

iv
:1

90
2.

10
10

7v
2 

 [
ee

ss
.A

S]
  1

7 
M

ay
 2

01
9

http://www.robots.ox.ac.uk/~vgg/research/speakerID


applied only to the time domain [11, 12, 13, 21]. A number
of papers [8, 22] have also used LSTM-based front-end archi-
tectures.

The output from the feature extractor is a variable length
feature vector, dependant on the length of the input utter-
ance. Average pooling layers have been used in [2, 3, 8] to
aggregate frame-level feature vectors to obtain a fixed length
utterance-level embedding. [11] introduces an extension of
the method in which the standard deviation is used as well
as the mean – this method is termed statistical pooling, and
used by [12, 21]. Unlike these methods which ingest infor-
mation from all frames with equal weighting, [20, 22] have
employed attention models to assign weight to the more dis-
criminative frames. [13] combines the attention models and
the statistical model to propose attentive statistics pooling –
this method holds the current state-of-the-art performance on
the VoxCeleb1 dataset. The final pooling strategy of in-
terest is the Learnable Dictionary Encoding (LDE) proposed
by [14, 15]. This method is closely based on the NetVLAD
layer [16, 23] designed for image retrieval.

Typically, such systems are trained end-to-end for classi-
fication with a softmax loss [13] or one of its variants, such as
the angular softmax [15]. In some cases, the network is fur-
ther trained for verification using the contrastive loss [2, 3, 24]
or other metric learning losses such as the triplet loss [7].
Similarity metrics like the cosine similarity or PLDA are of-
ten adopted to generate a final pairwise score.

2. METHODS

For speaker recognition, the ideal model should have the fol-
lowing properties: (1) It should ingest arbitrary time lengths
as input, and produce a fixed-length utterance-level descrip-
tor. (2) The output descriptor should be compact (i.e. low-
dimensional), requiring little memory, to facilitate efficient
storage and retrieval. (3) The output descriptor should also be
discriminative, such that the distance between descriptors of
different speakers is larger than those of the same speaker.

To satisfy all the aforementioned properties, we use a
modified ResNet in a fully convolutional way to encode in-
put 2D spectrograms, followed by a NetVLAD/GhostVLAD
layer for feature aggregation along the temporal axis. This
produces a fixed-length output descriptor. Intuitively, the
VLAD layer can be thought of as trainable discriminative
clustering: every frame-level descriptor will be softly as-
signed to different clusters, and residuals are encoded as
the output features. To allow efficient verification (i.e. low
memory, fast similarity computation), we further add a fully
connected layer for dimensionality reduction. Discriminative
representations emerge because the entire network is trained
end-to-end for speaker identification. The network is shown
in Figure 1 and described in more detail in the following
paragraphs.

Fig. 1: Network architecture. It consists of two parts: fea-
ture extraction, where a shared CNN is used to encode the
spectrogram and extract frame-level features, and aggrega-
tion, which aggregates all the local descriptors into a single
compact representation of arbitrary length.

Module Input Spectrogram (257× T × 1) Output Size

Thin ResNet

conv2d, 7× 7, 64 257× T × 64

max pool, 2× 2, stride (2, 2) 128× T/2× 64
conv, 1× 1, 48

conv, 3× 3, 48

conv, 1× 1, 96

× 2 128× T/2× 96


conv, 1× 1, 96

conv, 3× 3, 96

conv, 1× 1, 128

× 3 64× T/4× 128


conv, 1× 1, 128

conv, 3× 3, 128

conv, 1× 1, 256

× 3 32× T/8× 256


conv, 1× 1, 256

conv, 3× 3, 256

conv, 1× 1, 512

× 3 16× T/16× 512

max pool, 3× 1, stride (2, 2) 7× T/32× 512

conv2d, 7× 1, 512 1× T/32× 512

Table 1: The thin-ResNet used for frame level feature extrac-
tion. ReLU and batch-norm layers are not shown. Each row
specifies the # of convolutional filters, their sizes, and the #
filters. This architecture has only 3 million parameters com-
pared to the standard ResNet-34 (22 million).

Feature Extraction. The first stage involves feature extrac-
tion from input spectrograms. While any network can be
used in our learning framework, we opt for a modified ResNet
with 34 layers. Compared to the standard ResNet used before
by [3], we cut down the number of channels in each residual
block, making it a thin ResNet-34 (Table 1).

NetVLAD. The second part of the network uses NetVLAD [16]
to aggregate frame-level descriptors into a single utterance-



level vector. Here we provide a brief overview of NetVLAD
(for full details please refer to [16]).

The thin ResNet maps the input spectrogram (R257×T×1)
to frame-level descriptors with size R1×T/32×512. The
NetVLAD layer then takes dense descriptors as input and
produces a single K × D matrix V , where K refers to the
number of chosen cluster, and D refers to the dimensionality
of each cluster. Concretely, the matrix of descriptors V is
computed using the following equation:

V (k, j) =

T/32∑
t=1

ewkxt+bk∑K
k′=1 e

w′
kxt+bk′

(xt(j)− ck(j)) (1)

where {wk}, {bk} and {ck} are trainable parameters, with
k ∈ [1, 2, ...,K]. The first term corresponds to the soft-
assignment weight of the input vector xi for cluster k, while
the second term computes the residual between the vector and
the cluster centre. The final output is obtained by performing
L2 normalisation and concatenation. To keep computational
and memory requirements low, dimensionality reduction is
performed via a Fully Connected (FC) layer, where we pick
the output dimensionality to be 512. We also experiment with
the recently proposed GhostVLAD [17] layer, where some
of the clusters are not included in the final concatenation, and
so do not contribute to the final representation, these are re-
ferred to as ‘ghost clusters’ (we used two in our implementa-
tion). Therefore, while aggregating the frame-level features,
the contribution of the noisy and undesirable sections of a
speech segment to normal VLAD clusters is effectively down-
weighted, as most of their weights have been assigned to the
‘ghost cluster’. For further details, please see [17].

3. EXPERIMENTS

3.1. Datasets

We train our model end-to-end on the VoxCeleb2 [3]
dataset (only on the ‘dev’ partition, this contains speech from
5,994 speakers) for identification and test on the VoxCeleb1
verification test sets [3]. Note that the development set of
VoxCeleb2 is completely disjoint from the VoxCeleb1
dataset (i.e. no speakers in common).

3.2. Training Loss

Besides the standard softmax loss, we also experiment with
the additive margin softmax (AM-Softmax) classification
loss [25] during training. This loss is known to improve ver-
ification performance by introducing a margin in the angular
space. The loss is given by the following equation:

Li = −log
es(cos θyi−m)

es(cos θyi−m) +
∑
j 6=yi e

s cos(θj)
(2)

where Li refers to cost of assigning the sample to the correct
class, θy = arccos(wTx) refers to the angle between sample
features (x) and the decision hyperplane (w), as both vectors
have been L2 normalised. The goal is therefore to minimise
this angle by making cos(θyi)−m as large as possible, where
m refers to the angular margin. The hyper-parameter s con-
trols the “temperature” of the softmax loss, producing higher
gradients to the well-separated samples (and further shrinking
the intra-class variance). We used the default values m = 0.4
and s = 30 [25].

3.3. Training Details

During training, we use a fixed size spectrogram correspond-
ing to a 2.5 second temporal segment, extracted randomly
from each utterance. Spectrograms are generated in a slid-
ing window fashion using a hamming window of width 25ms
and step 10ms. We use a 512 point FFT, giving us 256 fre-
quency components, which together with the DC component
of each frame gives a short-time Fourier transform (STFT) of
size 257 × 250 (frequency ×temporal) out of every 2.5 sec-
ond crop. The spectrogram is normalised by subtracting the
mean and dividing by the standard deviation of all frequency
components in a single time step. No voice activity detection
(VAD), or automatic silence removal is applied. We use the
Adam optimiser with an initial learning rate of 1e − 3, and
decrease the learning rate by 10 after every 36 epochs until
convergence.

4. RESULTS

In this section we first compare the performance of our
NetVLAD and GhostVLAD architectures trained using dif-
ferent losses to the state of the art, and then investigate how
performance varies with utterance length.

4.1. Verification on VoxCeleb1

The trained network is evaluated on three different test lists
from the VoxCeleb1 dataset: (1) the original VoxCeleb1
test list with 40 speakers; (2) the extended VoxCeleb1-E
list that uses the entire VoxCeleb1 (train and test splits)
for evaluation; and (3) the challenging VoxCeleb1-H
list where the test pairs are drawn from identities with the
same gender and nationality. In addition, we find that there
are a small number of errors in the VoxCeleb1-E and
VoxCeleb1-H lists, and hence we evaluate on a cleaned up
version of both lists as well, which we release publically. The
network is tested on the full length of the test segment. We do
not use any test time augmentation, which could potentially
lead to slight performance gains.

Table 2 compares the performance of our models to the
current state-of-the-art on the original VoxCeleb1 test set.
Our model outperforms all previous methods. With standard



Front-end model Loss Dims Aggregation Training set EER (%)

VoxCeleb1 test set
Nagrani et al. [2] I-vectors + PLDA – – – VoxCeleb1 8.8
Nagrani et al. [2] VGG-M Softmax 1024 TAP VoxCeleb1 10.2
Cai et al. [15] ResNet-34 A-Softmax + PLDA 128 TAP VoxCeleb1 4.46
Cai et al. [15] ResNet-34 A-Softmax + PLDA 128 SAP VoxCeleb1 4.40
Cai et al. [15] ResNet-34 A-Softmax + PLDA 128 LDE VoxCeleb1 4.48
Okabe et al. [13] TDNN (x-vector) Softmax 1500 TAP VoxCeleb1 4.70
Okabe et al. [13] TDNN (x-vector) Softmax 1500 SAP VoxCeleb1 4.19
Okabe et al. [13] TDNN (x-vector) Softmax 1500 ASP VoxCeleb1 3.85
Hajibabaei et al. [19] ResNet-20 A-Softmax 128 TAP VoxCeleb1 4.40
Hajibabaei et al. [19] ResNet-20 AM-Softmax 128 TAP VoxCeleb1 4.30
Chung et al. [3] ResNet-34 Softmax + Contrastive 512 TAP VoxCeleb2 5.04
Chung et al. [3] ResNet-50 Softmax + Contrastive 512 TAP VoxCeleb2 4.19
Ours Thin ResNet-34 Softmax 512 TAP VoxCeleb2 10.48
Ours Thin ResNet-34 Softmax 512 NetVLAD VoxCeleb2 3.57
Ours Thin ResNet-34 AM-Softmax 512 NetVLAD VoxCeleb2 3.32
Ours Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 3.22
Ours Thin ResNet-34 AM-Softmax 512 GhostVLAD VoxCeleb2 3.23
Ours (cleaned †) Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 3.24

VoxCeleb1-E
Chung et al. [3] ResNet-50 Softmax + Contrastive 512 TAP VoxCeleb2 4.42
Ours Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 3.24
Ours (cleaned †) Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 3.13
VoxCeleb1-H
Chung et al. [3] ResNet-50 Softmax + Contrastive 512 TAP VoxCeleb2 7.33
Ours Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 5.17
Ours (cleaned †) Thin ResNet-34 Softmax 512 GhostVLAD VoxCeleb2 5.06

Table 2: Results for verification on the original VoxCeleb1 test set [2] and the extended and hard test sets (VoxCeleb-E and
VoxCeleb-H) [3]. [15, 13, 19] do not report results on the VoxCeleb-E and VoxCeleb-H) [3] test sets. TAP: Temporal Average
Pooling. SAP: Self-attentive Pooling Layer [15], † Cleaned up versions of the test lists have been released publically. We
encourage other researchers to evaluate on these lists.

softmax loss and a NetVLAD aggregation layer, it outper-
forms the original ResNet-based architecture [3] by a sig-
nificant margin (EER of 3.57% vs 4.19%) whilst requiring
far fewer parameters (10 vs 26 million). By replacing the
standard softmax with the additive margin softmax (AM-
Softmax), a further performance gain is achieved (3.32%
EER). The GhostVLAD layer, which excludes irrelevant
information from the aggregation, additionally makes a mod-
est contribution to performance (3.22% EER). On the chal-
lenging VoxCeleb1-H test set, we outperform the original
ResNet-based architecture [3] (EER of 5.17% vs 7.33%),
which is by a larger margin than on the original VoxCeleb1
test set. The most similar architecture to ours is the dictionary
based method of Cai et al. [15], which we also outperform
(EER of 3.22% vs 4.48% ). We note that training a soft-
max loss based on features from temporal average pooling
(TAP) yields extremely poor results (EER of 10.48%). We
conjecture that the features from TAP are typically good at
optimizing the inter-class difference (i.e., separating different
speakers), but not good at reducing the intra-class variation
(i.e. making features of the same speaker compact). There-
fore, contrastive loss with online hard sample mining leads
to a significant performance boost, as demonstrated in [3] for
TAP. It is possible that this would also give a performance

boost for NetVLAD/GhostVLAD pooling.

4.2. Additional experiment on GhostVLAD

In Table 3, we study the effect of the number of clusters in the
GhostVLAD layer. Despite small differences in performance,
we show that VLAD aggregation is robust to the number of
clusters and to two different loss functions.

Loss Aggregation Clusters G Clusters EER (%)
Softmax GhostVLAD 8 2 3.22

AMSoftmax GhostVLAD 8 2 3.23
Softmax GhostVLAD 10 2 3.37

AMSoftmax GhostVLAD 10 2 3.34
Softmax GhostVLAD 12 2 3.30
Softmax GhostVLAD 14 2 3.31

Table 3: Results for verification on the original VoxCeleb1
test set. All models used the same architecture (Thin ResNet-
34), and we vary the number of VLAD clusters and the loss
function.

4.3. Probing verification based on length

Table 4 shows the effect of the length of the test segment
on speaker recognition performance. In order to provide a



fair comparison on lengths up to 6 seconds, we restricted the
testing dataset (VoxCeleb1) to speech segments that were 6
seconds or longer (87,010 segments or 56.7% of the total
dataset). To generate verification pairs, for each speaker in
the VoxCeleb1 dataset (1251 speakers in total), we randomly
sample 100 positive pairs and 100 negative pairs, resulting in
25,020 verification pairs. During testing, segments of length
2s, 3s, 4s, 5s and 6s are randomly cropped from each verifi-
cation pair. We repeat this process three times, and compute
mean and standard deviation.

Segment
length(s) 2 3 4 5 6

EER 7.97±0.06 5.73±0.04 4.70±0.02 4.10±0.02 3.39±0.02

Table 4: Utterance length (in seconds) on performance.

As shown in Table 4, there is indeed a strong correlation
between verification performance and sequence length. For
‘in the wild’ sequences, some of the data may be noise, si-
lence, or speech from other speakers, and a single short se-
quence may be unlucky and consist of predominantly these
irrelevant signals. As the temporal length increases, there is
a higher chance of capturing relevant speech signals from the
actual speaker.

5. CONCLUSION

In this paper, we have proposed a powerful speaker recogni-
tion network, using a ‘thin-ResNet’ trunk architecture, and
a dictionary-based NetVLAD and GhostVLAD layers to ag-
gregate features across time that can be trained end-to-end.
The network achieves state-of-the-art performance on the
popular VoxCeleb1 test set for speaker recognition, whilst
requiring fewer parameters than previous methods. We have
also shown the effect of utterance length on performance,
and concluded that for ‘in the wild’ data, a longer length is
beneficial.

Acknowledgements. Funding for this research is provided
by the EPSRC Programme Grant Seebibyte EP/M013774/1.
AN is supported by a Google PhD Fellowship in Machine
Perception, Speech Technology and Computer Vision.

6. REFERENCES

[1] M. McLaren, L. Ferrer, D. Castan, and A. Lawson,
“The speakers in the wild (SITW) speaker recognition
database,” in INTERSPEECH, 2016.

[2] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb:
a large-scale speaker identification dataset,” in INTER-
SPEECH, 2017.

[3] J. S. Chung, A. Nagrani, and A. Zisserman, “Vox-
Celeb2: Deep speaker recognition,” in INTERSPEECH,
2018.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin,
et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[5] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in pytorch,” 2017.

[6] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional
neural networks for matlab,” in Proc. ACMM, 2015.

[7] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao,
A. Kannan, and Z. Zhu, “Deep speaker: an end-to-
end neural speaker embedding system,” arXiv preprint
arXiv:1705.02304, 2017.

[8] L. Wan, Q. Wang, A. Papir, and I.L. Moreno, “General-
ized end-to-end loss for speaker verification,” in 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp.
4879–4883.

[9] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann, “Speaker
identification and clustering using convolutional neural
networks,” in IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE,
2016, pp. 1–6.

[10] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot,
D. Martinez, J. Gonzalez-Rodriguez, and P. Moreno,
“Automatic language identification using deep neural
networks,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 5337–5341.

[11] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khu-
danpur, “Deep neural network embeddings for text-
independent speaker verification,” Proc. Interspeech
2017, pp. 999–1003, 2017.

[12] S. Shon, H. Tang, and J. Glass, “Frame-level speaker
embeddings for text-independent speaker recognition
and analysis of end-to-end model,” arXiv preprint
arXiv:1809.04437, 2018.

[13] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive
statistics pooling for deep speaker embedding,” arXiv
preprint arXiv:1803.10963, 2018.

[14] W. Cai, Z. Cai, X. Zhang, X. Wang, and M. Li, “A novel
learnable dictionary encoding layer for end-to-end lan-
guage identification,” arXiv preprint arXiv:1804.00385,
2018.



[15] W. Cai, J. Chen, and M. Li, “Exploring the en-
coding layer and loss function in end-to-end speaker
and language recognition system,” arXiv preprint
arXiv:1804.05160, 2018.

[16] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and
J. Sivic, “NetVLAD: CNN architecture for weakly su-
pervised place recognition,” in Proc. CVPR, 2016.

[17] Y. Zhong, R. Arandjelović, and A. Zisserman,
“GhostVLAD for set-based face recognition,” in Asian
Conference on Computer Vision, ACCV, 2018.

[18] W. Cai, J. Chen, and M. Li, “Analysis of length normal-
ization in end-to-end speaker verification system,” arXiv
preprint arXiv:1806.03209, 2018.

[19] M. Hajibabaei and D. Dai, “Unified hypersphere
embedding for speaker recognition,” arXiv preprint
arXiv:1807.08312, 2018.

[20] G. Bhattacharya, J. Alam, and P. Kenny, “Deep speaker
embeddings for short-duration speaker verification,” in
Proc. Interspeech, 2017, pp. 1517–1521.

[21] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, “X-vectors: Robust dnn embeddings for
speaker recognition,” ICASSP, Calgary, 2018.

[22] FA Chowdhury, Quan Wang, Ignacio Lopez Moreno,
and Li Wan, “Attention-based models for text-
dependent speaker verification,” arXiv preprint
arXiv:1710.10470, 2017.

[23] Jinkun Chen, Weicheng Cai, Danwei Cai, Zexin Cai,
Haibin Zhong, and Ming Li, “End-to-end language
identification using netfv and netvlad,” in Proc. ISC-
SLP, 2018.

[24] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, H. Chen,
R. Vedantham, R. Grzeszczuk, and B. Girod, “Residual
enhanced visual vectors for on-device image matching,”
in Asilomar, 2011.

[25] F. Wang, W. Liu, H. Liu, and J. Cheng, “Additive
margin softmax for face verification,” arXiv preprint
arXiv:1801.05599, 2018.


	1  Introduction
	1.1  Related works

	2  Methods
	3  Experiments
	3.1  Datasets
	3.2  Training Loss
	3.3  Training Details

	4  Results
	4.1  Verification on VoxCeleb1
	4.2  Additional experiment on GhostVLAD
	4.3  Probing verification based on length

	5  Conclusion
	6  References

