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ABSTRACT

This work proposes the use of clean speech vocoder parame-

ters as the target for a neural network performing speech en-

hancement. These parameters have been designed for text-to-

speech synthesis so that they both produce high-quality resyn-

theses and also are straightforward to model with neural net-

works, but have not been utilized in speech enhancement until

now. In comparison to a matched text-to-speech system that

is given the ground truth transcripts of the noisy speech, our

model is able to produce more natural speech because it has

access to the true prosody in the noisy speech. In comparison

to two denoising systems, the oracle Wiener mask and a DNN-

based mask predictor, our model equals the oracle Wiener

mask in subjective quality and intelligibility and surpasses

the realistic system. A vocoder-based upper bound shows

that there is still room for improvement with this approach

beyond the oracle Wiener mask. We test speaker-dependence

with two speakers and show that a single model can be used

for multiple speakers.

Index Terms— Speech enhancement, synthesis, vocoder

1. INTRODUCTION

The general approach of speech enhancement has been to

modify a noisy signal to make it more like the clean signal [1].

The main problems for such systems are the over-suppression

of the speech and under-suppression of the noise. Ideally,

speech enhancement systems should remove the noise com-

pletely without decreasing the speech quality. There are,

however, statistical text-to-speech (TTS) synthesis systems

that can produce high-quality speech from textual inputs

(e.g., [2]) by training an acoustic model to map text to the

time-varying acoustic parameters of a vocoder, which then

generates the speech. The most difficult part of this task,

however, is predicting realistic prosody (timing information

and pitch and loudness contours) from pure text.

In this paper, we propose combining these two approaches

to capitalize on the strengths of each by predicting the acous-

tic parameters of clean speech from a noisy observation and

then using a vocoder to synthesize the speech. We show that

this combined system can produce high-quality and noise-free

speech utilizing the true prosody observed in the noisy speech.

We demonstrate that the noisy speech signal has more infor-

mation about the clean speech than its transcript does. Specif-

ically, it is easier to predict realistic prosody from the noisy

speech than from text. Thus, we train a neural network to

learn the mapping from noisy speech features to the acous-

tic parameters of the corresponding clean speech. From the

predicted acoustic features, we generate clean speech using

a speech synthesis vocoder. Since we are creating a clean

resynthesis of the noisy signal, the output speech quality will

be higher than standard speech denoising systems and com-

pletely noise-free. We refer to the proposed model as para-

metric resynthesis.

In this paper, we show that parametric resynthesis outper-

forms statistical TTS in terms of traditional speech synthesis

objective metrics. Next we subjectively evaluate the intelligi-

bility and quality of the resynthesized speech and compare it

with a mask predicted by a DNN-based system [3] and the or-

acle Wiener mask [4]. We show that the resynthesized speech

is noise-free and has overall quality and intelligibility equiv-

alent to the oracle Wiener mask and exceeding that of the

DNN-predicted mask. We also show that a single paramet-

ric resynthesis model can be used for multiple speakers.

2. RELATED WORK

Traditional speech synthesis systems are of two types, con-

catenative and parametric. In our previous works, [5, 6, 7,

8] we proposed concatenative synthesis systems for denois-

ing speech. Though these models can generate high quality

speech, they are speaker-dependent and generally require a

large dictionary of speech examples from that speaker. Alter-

natively, the current paper utilizes a parametric speech synthe-

sis model, which more easily generalizes to combinations of

conditions not seen explicitly in training examples.

In terms of parametric resynthesis, Rethage et al. [9] built

an end-to-end model to map noisy audio to explicit models

of both clean speech and noise using a WaveNet-like [10] ar-

chitecture. Compared to this model, our denoising system is

much simpler, as it does not require an explicit model of the

observed noise in order to converge and needs much less data

and time to train. This simplicity comes from using the non-

neural WORLD vocoder [11].
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Fig. 1. Vocoder denoising model

3. MODEL OVERVIEW

Parametric resynthesis consists of two stages: prediction and

synthesis as shown in Figure 1. The first stage is to train

a prediction model with noisy audio features as input and

clean acoustic features as output labels. The second stage

is to resynthesize audio using the vocoder from the predicted

acoustic features.

We use the WORLD vocoder [11] to transform be-

tween acoustic parameters and clean speech waveform. This

vocoder allows both the encoding of speech audio into acous-

tic parameters and the decoding of acoustic parameters back

into audio with very little loss of speech quality. The acoustic

parameters are much easier to predict using neural network

prediction models than the raw audio. We use the encoding

of clean speech to generate our training targets and the de-

coding of predictions to generate output audio. The WORLD

vocoder is incorporated into the Merlin neural network-based

speech synthesis system [2], and we utilize Merlin’s training

targets and losses for our model.

The prediction model is a neural network that takes as

input the log mel spectra of the noisy audio and predicts

clean speech acoustic features at a fixed frame rate. The

WORLD encoder outputs four acoustic parameters: i) spec-

tral envelope, ii) log fundamental frequency (F0), iii) a

voiced/unvoiced decision and iv) aperiodic energy of the

spectral envelope. All the features are concatenated with

their first and second derivatives and used as the targets of

the prediction model. There are 60 features for spectral en-

velope, 5 for band aperiodicity, 1 for F0 and a boolean flag

for the voiced/unvoiced decision. The prediction model is

then trained to minimize the mean squared error loss between

prediction and ground truth. This architecture is similar to

the acoustic modelling of statistical TTS. We first use a feed-

forward DNN as the core of the prediction model, then we

use LSTMs [12] for better incorporation of context. For the

feed-forward DNN, we include an explicit context of ±4

neighboring frames.

4. EXPERIMENTS

4.1. Dataset

The noisy dataset is generated by adding environmental noise

to the CMU arctic speech dataset [13]. The arctic dataset

contains the same 1132 sentences spoken by four different

speakers. The speech is recorded in studio environment. The

sentences are taken from different texts from Project Guten-

berg and are phonetically balanced. We add environmental

noise from the CHiME-3 challenge dataset [14]. The noise

was recorded in four different environments: street, pedes-

trian walkway, cafe, and bus interior. Six channels are avail-

able for each noisy file, we treat each channel as a separate

noise recording. We mix clean speech with a randomly cho-

sen noise file starting from a random offset with a constant

gain of 0.95. The signal-to-noise ratio (SNR) of the noisy

files ranges from −6 dB to 21 dB, with average being 6 dB.

The sentences are 2 to 13 words long, with a mean length

of 9 words. We mainly use a female speech corpus (“slt”)

for our experiments. A male (“bdl”) voice is used to test the

speaker-dependence of the system. The dataset is partitioned

into 1000-66-66 as train-dev-test. Features are extracted with

a window size of 64 ms at a 5 ms hop size.

4.2. Evaluation

We evaluate two aspects of the parametric resynthesis system.

Firstly, we compare speech synthesis objective metrics like

spectral distortion and errors in F0 prediction with a TTS sys-

tem. This quantifies the performance of our model in transfer-

ring prosody from noisy to clean speech. Secondly, we com-

pare the intelligibility and quality of the speech generated by

parametric resynthesis (PR) against two speech enhancement

systems, a DNN-predicted ratio mask (DNN-IRM) [3] and the

oracle Wiener mask (OWM) [4]. The ideal ratio mask DNN is

trained with the same data as PR. The OWM uses knowledge

of the true speech to compute the Wiener mask and serves as

an upper bound on the performance achievable by mask based

enhancement systems1.

A limitation of the proposed method is that the vocoder

is not able to perfectly reproduce clean speech, so we en-

code and decode clean speech with it in order to estimate the

loss in intelligibility and quality attributable to the vocoder

alone, which we show is small. We call this system vocoder-

encoded-decoded (VED). Moreover, we also measure the per-

formance of a DNN that predicts vocoder parameters directly

from clean speech as a more realistic upper bound on our

speech denoising system. This is the PR model with clean

speech as input, referred to as PR-clean.

4.3. TTS objective measures

First, we evaluate the TTS objective measures for PR, PR-

clean, and the TTS system. We train the feedforward DNN

with 4 layers of 512 neurons each with tanh activation func-

tion and the LSTM with 2 layers of width 512 each. We use

adam optimization [15] and early stopping regularization. For

TTS system inputs, we use the ground truth transcript of the

noisy speech. As both TTS and PR are predicting acoustic

features, we measure errors in the prediction via mel cepstral

1All files are available at http://mr-pc.org/work/icassp19/

http://mr-pc.org/work/icassp19/


Spectral Distortion F0 measures

System MCD (dB↓) BAPD (dB↓) RMSE (Hz↓) CORR (↑) VUV (↓)

PR-clean 2.68 0.16 4.95 0.96 2.78%

TTS (DNN) 5.28 0.25 13.06 0.71 6.66%

TTS (LSTM) 5.05 0.24 12.60 0.73 5.60%

PR (DNN) 5.07 0.19 8.83 0.93 6.48%

PR (LSTM) 4.81 0.19 5.62 0.95 5.27%

Table 1. TTS objective measures for single-speaker experiment: mean cepstral distortion (MCD), band aperiodicity (BAPD),

root mean square error (RMSE), voiced-unvoiced error rate (VUV), and correlation (CORR). For MCD, BAPD, RMSE, and

VUV lower is better (↓), for CORR higher is better (↑).

Speakers Spectral Distortion F0 measures

Model Train Test MCD (dB↓) BAPD(dB↓) RMSE(Hz↓) CORR(↑) UUV(↓)

PR slt slt 4.81 0.19 5.62 0.95 5.27%

PR slt+bdl slt 4.91 0.20 8.36 0.92 6.50%

PR bdl bdl 5.40 0.21 9.67 0.82 12.34%

PR slt+bdl bdl 5.19 0.21 10.41 0.82 12.17%

Table 2. TTS objective measures for multi-speaker parametric resynthesis models compared to single speaker model.

distortion (MCD), band aperiodicity distortion (BAPD), F0

root mean square error (RMSE), Pearson correlation (CORR)

of F0, and classification error in voiced-unvoiced decisions

(VUV). The results are reported in Table 1.

Results from PR-clean show that acoustic parameters that

generate speech with very low spectral distortion and F0 error

can be predicted from clean speech. More importantly, we see

from Table 1 that PR performs considerably better than the

TTS system. It is also interesting to note that the F0 measures,

RMSE and Pearson correlation are significantly better in the

parametric resynthesis system than TTS. This demonstrates

that it is easier to predict acoustic features, including prosody,

from noisy speech than from text. We observe that the LSTM

performs best and it is used in our subsequent experiments.

Evaluating multiple speaker model Next we train a PR

model with speech from two speakers and test its effective-

ness on each speaker’s dataset. We first train two single-

speaker PR models using the slt (female) and bdl (male) data

in the CMU arctic dataset. Then we train a new PR model

with speech from both speakers. We measure the objective

metrics on both datasets to understand how well a single

model can model both speakers. These objective metrics

are reported in Table 2, from which we observe that the

single-speaker models slightly out-perform the multi-speaker

models. On the bdl dataset, however, the multi-speaker model

performs better than the single-speaker model in predicting

voicing decisions and in MCD. It scores the same in BAPD

and F0 correlation, but does worse on F0 RMSE. These re-

sults show that the same model can be used for multiple

speakers. In future work we will investigate the degree to

which a single model can generalize to completely unseen

speakers.

4.4. Speech enhancement objective measures

We measure objective intelligibility with short-time-objective-

intelligibility (STOI) [16] and objective quality with percep-

tual evaluation of speech quality (PESQ) [17]. We compare

the clean, noisy, VED, TTS, PR-clean speech for reference.

The results are reported in Table 3.

Of the vocoder-based systems, VED shows very high ob-

jective quality and intelligibility. This demonstrates that the

vocoder is able to produce high fidelity speech when it is fed

with acoustic parameters that are exactly correct. The PR-

clean system shows slightly lower intelligibility and quality

than VED. The TTS system shows very low quality and intel-

ligibility, but this can be explained by the fact that the objec-

tive measures compare the output to the original clean signal.

For the speech denoising systems, the oracle Wiener

mask performs best, because it has access to the clean speech.

While it is an upper bound on mask-based speech enhance-

ment, it does degrade the quality of the speech from the clean

by attenuating regions where there is speech present, but

the noise is louder. Parametric resynthesis outperforms the

predicted IRM in objective quality and intelligibility.

4.5. Subjective Intelligibility and Quality

Finally we evaluate the subjective intelligibility and quality

of PR compared with OWM, DNN-IRM, PR-clean, and the



Model PESQ STOI

Clean 4.50 1.00

VED 3.39 0.93

OWM 3.31 0.96

PR-clean 2.98 0.92

PR 2.43 0.87

DNN-IRM 2.26 0.80

Noisy 1.88 0.88

TTS 1.33 0.08

Table 3. Speech enhancement objective metrics: quality

(PESQ) and intelligibility (STOI), higher is better for both.

Systems in the top section use oracle information about the

clean speech. All systems sorted by PESQ.

ground truth clean and noisy speech. From 66 test sentences,

we chose 12, with 4 sentences from each of three groups:

SNR < 0 dB, 0 dB ≤ SNR < 5 dB, and 5 dB ≤ SNR. Prelim-

inary listening tests showed that the PR-clean files sounded

quite similar to the VED files, so we included only PR-clean.

This resulted in a total of 84 files (7 versions of 12 sentences).

For the subjective intelligibility test, subjects were pre-

sented with all 84 sentences in a random order and were asked

to transcribe the words that they heard in each one. Four sub-

jects listened to the files. A list of all of the words was given to

the subjects in alphabetical order, but they were asked to write

what they heard. Figure 2 shows the percentage of words

correctly identified averaged over all files. Intelligibility is

very high (> 90%) in all systems, including noisy. PR-clean

achieves intelligibility as high as clean speech. OWM, PR,

and noisy speech had equivalent intelligibility, slightly below

that of clean speech. This shows that PR achieves intelligibil-

ity as high as the oracle Wiener mask.

The speech quality test follows the Multiple Stimuli with

Hidden Reference and Anchor (MUSHRA) paradigm [18].

Subjects were presented with all seven of the versions of a

given sentence together in a random order without identifiers,

along with reference clean and noisy versions. The subjects

rated the speech quality, noise reduction quality, and overall

quality of each version between 1 and 100, with higher scores

denoting better quality. Three subjects participated and re-

sults are shown in Figure 3.

From the results, we see that the PR system achieves

higher noise suppression quality than the OWM, demonstrat-

ing that the output is noise-free. PR also achieves comparable

overall quality to OWM and PR-clean, indicating that its per-

formance is close to the ceiling imposed by the vocoder. This

ceiling is demonstrated by the difference between PR-clean

and the original clean speech. Note also that the large objec-

tive differences between PR and OWM are not present in the

subjective results, suggesting that reference-based objective

measures may not be accurate for synthetic signals. The PR

70 75 80 85 90 95 100

DNN-IRM

TTS

PR

Noisy

OWM

Clean

PR-clean
words identified

Fig. 2. Subjective intelligibility: percentage of correctly

identified words. Error bars show twice the standard error.
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Noisy

Hidden Noisy
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TTS
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Fig. 3. Subjective quality: higher is better.

system achieves better speech quality than the TTS system

and better quality in all three measures than DNN-IRM.

5. CONCLUSION

This paper has introduced a speech denoising system inspired

by statistical text-to-speech synthesis. The proposed para-

metric resynthesis system predicts the time-varying acoustic

parameters of clean speech directly from noisy speech, and

then uses a vocoder to generate the speech waveform. We

show that this model outperforms statistical TTS by captur-

ing the prosody of the noisy speech. It provides compara-

ble quality and intelligibility to the oracle Wiener mask by

reproducing all parts of the speech signal, even those buried

in noise, while still allowing room for improvement as demon-

strated by its own oracle upper bound. Future work will ex-

plore the extent of speaker-independence that is achievable

with this system and other kinds of inputs like filtered and de-

graded speech [19], and electrophysiological recordings like

EEG [20] and ECoG [21].
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