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Abstract—We formulate the problem of sampling and recov-
ering clustered graph signal as a multi-armed bandit (MAB)
problem. This formulation lends naturally to learning sampling
strategies using the well-known gradient MAB algorithm. In
particular, the sampling strategy is represented as a probability
distribution over the individual arms of the MAB and optimized
using gradient ascent. Some illustrative numerical experiments
indicate that the sampling strategies based on the gradient MAB
algorithm outperform existing sampling methods.

Index Terms—machine learning, reinforcement learning, multi-
armed bandit, graph signal processing, total variation, complex
networks.

I. INTRODUCTION

Modern information processing systems generate massive
datasets which are often strongly heterogeneous, e.g., par-
tially labeled mixtures of different media (audio, video, text).
A quite successful approach to such datasets is based on
representing the data as networks or graphs. In particular,
we represent datasets by graph signals defined over an un-
derlying graph, which reflects similarities between individual
data points. The graph signal values encode label information
which often conforms to a clustering hypothesis, i.e., the signal
values (labels) of close-by nodes (similar data points) are
similar.

Two core problems considered within graph signal process-
ing (GSP) are (i) how to sample them, i.e., which signal values
provide the most information about the entire dataset, and (ii)
how to recover the entire graph signal from these few signal
values (samples). These problems have been studied in [1[]—[6]]
which discussed convex optimization methods for recovering a
graph signal from a small number of signal values observed on
the nodes belonging to a given (small) sampling set. Sufficient
conditions on the sampling set and clustering structure such
that these convex methods are successful have been discussed
in [4], [7].

Contribution. We propose a novel approach to the graph
signal sampling and recovery it by interpreting it as a rein-
forcement learning (RL) problem. In particular, we interpret
online sampling algorithm as an artificial intelligence agent
which chooses the nodes to be sampled on-the-fly. The be-
havior of the sampling agent is represented by a probability
distribution (“policy”) over a discrete set of different actions
which are at the disposal of the sampling agent in order to
choose the next node at which the graph signal is sampled.
The ultimate goal is to learn a sampling policy which chooses
signal samples that allow for a small reconstruction error.

Notation. The vector with all entries equal to zero is
denoted 0. Given a vector x with non-negative entries, we
denote by /x the vector whose entries are the square roots of
the entries of x. Similarly, we denote the element-wise square
of the vector as x2.

Outline. In Section [[I| we formulate the problem of recov-
ering a clustered graph signal from its values on few nodes
forming a sampling set as a convex optimization problem. Our
main contribution is in Section where we introduce our
RL-based sampling method. The results of some numerical
experiments are presented in Section We discuss our
findings in Section [V] and finally conclude in Section

II. PROBLEM FORMULATION

We consider datasets which are represented by a data graph
G = (V,€). The data graph is an undirected connected
graph (no self-loops and no multi-edges) with nodes V =
{1,..., N}, which are connected by edges {i,j} € £. Each
node ¢ € V represents an individual data point and an edge
{i,j} € & connects nodes representing similar data points.
The distance dist(,j) between two different nodes 4,j € V
is defined as the length of the shortest path between those
nodes. For a given node ¢ € V, we define its neighbourhood
as

N@) ={jeV:{ijl e}

It will be handy to generalize the notion of neighbourhood
and define, for some r € N, the r-step neighbourhood of a
node i € V as N(i,r) := {j € V : dist(¢,j) = r}. The 1-step
neighbourhood coincides with the neighbourhood of a node,
ie., N(i,1) = N(7).

In many applications we can associate each data point 7 € V
with a label x[i] € R. These labels induce a graph signal
x : ¥V — R defined over the graph G.

We aim at recovering a graph signal x based on observing
its values z[i] only for nodes i belonging to a sampling set

M::{il,...,iM}QV.

Since acquiring signal values (i.e., labelling data points) is
often expensive (requiring manual labor), the sampling set is
typically much smaller than the overall dataset, i.e., M =
M| <« N. For a fixed sampling set size (sampling budget)
M it is important to choose the sampling set such that the
signal samples {z[i]};cam carry maximal information about
the entire graph signal.

The recovery of the entire graph signal from (few) signal
samples {z[i]};err is possible for clustered graph signals



which do not vary too much over well-connected subset of
nodes (clusters) (cf. [4], [8]]). We will quantify how well a
graph signal is aligned to the cluster structure using the total
variation (TV)

v o= > |l —afill-
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Recovering a graph signal based on the signal values x[i] for
the nodes i € M of the sampling set M can be accomplished
by solving

xM earg min ||X|| v s.t. Z[i] =[] for all ie M. (1)

This is a convex optimization problem with a non-
differentiable objective function which precludes the use of
simple gradient descent methods. However, by applying the
primal-dual method of Pock and Chambolle [9] to solve the
recovery problem (I, an efficient sparse label propagation
algorithm has been obtained in [§]].

A simple but useful model for clustered graph signals is:

X = Z acte, )

CeF

with the cluster indicator signals

. 1,ifieC
tc[l] =

0 else.

The partition F underlying the signal model (2) can be chosen
arbitrarily in principle. However, our methods are expected to
be most useful if the partition matches the intrinsic cluster
structure of the data graph G. The clustered graph signals
of the form conform with the network topology, in the
sense of having small TV ||x||rvy, if the underlying partition
F = {C1,...,C x5} consists of disjoint clusters C; with
small cut-sizes. Relying on the clustered signal model (2)),
[7, Thm. 3] presents a sufficient condition on the choice of
sampling set such that the solution X of coincides with
the true underlying clustered graph signal of the form (2).
The condition presented in [[7, Thm. 3] suggests to choose
the nodes in the sampling set preferably near the boundaries
between the different clusters.

III. SIGNAL SAMPLING AS REINFORCEMENT LEARNING

The problem of selecting the sampling set M and recover-
ing the entire graph signal x from the signal values x[i] can be
interpreted as a RL problem. Indeed, we consider the selection
of the nodes to be sampled being carried out by an “agent”
which crawls over the data graph G. The set of actions our
sampling agent may take is A = {1,..., H}.

A specific action a € A refers to the number of hops the
sampling agent performs starting at the current node ¢, to reach
a new node 7,1, which will be added to the sampling set, i.e.,
M := MU{i;y1}. In particular, the new node i, is selected
uniformly at random among the nodes which belong to its a-
step neighbourhood N (i¢, a) (see Figure [1).

Fig. 1: The filled node represents the current location #; of
the sampling agent at time ¢. We also indicate the 1-, 2- and
3-step neighbourhoods.

The problem of optimally selecting actions at given time can
be formulated as a MAB problem. Each arm of the bandit is
associated with an action. In our setup, a sampling strategy (or
policy) amounts to specifying a probability distribution over
the individual actions a € A. We parametrize this probability
distribution with a weight vector w = (w1, ..., wg) € RH
using the softmax rule:
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The weight vector w is tuned in the episodic manner with
each episode amounting to selecting sampling set M based on
the policy 7(W). At each timestep t the agent randomly draws
an action a; according to the distribution 7(") and performs
transition to the next node ;41 which is selected uniformly
at random from the a;-step neighbourhood A (44, a;). As was
mentioned earlier, the node ¢, is added to the sampling set,
ie., M := MU {it1}. We also record the action a; and add
it to the action list, i.e., £ := LU {a}. The process continues
until we obtain a sampling set M with the prescribed size
(sampling budget) M.

Our goal is to learn an optimal policy 7(") for the sampling
agent in order to obtain signal samples which allow recovery
of the entire graph signal with minimum error. We assess the
quality of the policy using the mean squared error (MSE)
incurred by the recovered signal X which is obtained via
using the sampling set M by following policy 7("):

(z[5] — 2M[5])?

The obtained reward is associated with all actions/arms
which contributed to picking samples into sampling set during
the episode. For example, if the sampling set has been obtained
by pulling arms 1, 2 and 5, the obtained reward will be
associated with all these arms, because we do not know what is
the exact contribution of the specific arm to the finally obtained
MSE.

The key idea behind gradient MAB is to update weights w
so that actions yielding higher rewards become more probable
under 7(W) [[10L Chapter 2.8]. According to the aforementioned
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Fig. 2: Illustration of reward being conditioned on the position
of a sampling agent. In this picture: red node — current position
of the sampling agent, blue region — nodes within distance 1
from the sampling agent. Node indices are shown inside the
nodes, signal values — outside.

book weights update can be accomplished using gradient
ascent algorithm:

Jwa +aR(1 —7(a)),a = ay
T lw, — aRw(a),Ya # ay 3)
fork=1.M—-1,a€ A,ar € L

The single difference between update rule (3) and one
presented in the book [10, Eq. 2.10] is that in our case
weights update is performed in the end of each episode and
not after an arm pull. That is because we do not know
reward immediately after pulling an arm and should wait until
the whole sampling set is collected and reward is observed.
The intuition behind the update equation (3)) is that for each
arm which has participated in picking a node into sampling
set (a = a), the weight is increased, whereas weights of
remaining arms (Va # a;) are decreased. In both cases
degree of weight increase/decrease is scaled by the reward
obtained with help of this arm as well as by the learning rate
«. For faster convergence in our implementation, instead of
stochastic gradient ascent we use mini-batch gradient ascent
in combination with RMSprop technique [11]] (see Algorithm
[T] for implementation details).

Choice of the gradient MAB algorithm can be additionally
justified by the study [12] which shows that in the environ-
ments with non-stationary rewards probabilistic MAB policy
can result in higher expected reward in comparison to single-
best action policies. In our problem non-stationarity of reward
arises from the graph structure itself, i.e., reward distribution
for a particular arm of a bandit depends on the location of
the sampling agent. Suppose sampling budget M is 2 and
consider example presented in Figure 2] In case (a) sampling
agent is initially located at node 4. By pulling arm #1 it can
only pick node 3 which is in the other cluster. It is easy to
verify that by using recovery method graph signal will be
perfectly reconstructed (MSE = 0). On the other hand, case
(b) shows the situation when the agent can only pick nodes 2
or 3 belonging to the same cluster as currently sampled node,
leading to non-zero reconstruction MSE.

The whole process of weight updates is repeated for suffi-
cient number of episodes until convergence is reached and
the optimal stochastic policy is attained. Described above
learning procedure can be efficiently summarized in the form

of pseudocode (see Algorithm [I).

Algorithm 1 Online Sampling and Reconstruction

Input: data graph G, sampling budget M, batch size B, «
Initialize: w := O, M = {0}, £ = {0},Vw = 0,g =
0,ep=0
1: repeat
2 select starting node ¢ € V randomly
3 M= {i}
5 L={0}
5: for t :=1;t < M do
6 a := SAMPLEACTION (7 (W))
7 Inest = SAMPLENODE(G, N (4, a))
8 M= MU {inest}
9: L := APPENDTOLIST(L, a)
10: 1= ine:z:t

11: end for
12: X € arg min [|X||Tv
13: s.t. Z[i]=x[i] for all i€ M

14 Ri=—g 3 (2lj] - 2[5)?
JEV
15: for k :=1;k < M do
16: for a :=1;a < H do
) Vwa + R(1 —7(a)), if a = L[k

17: Vwg : )
Vw, — Rr(a), otherwise

18: end for

19: end for

20: ep:=ep+1
21: if ep mod B = 0 then

22: g :=0.9g + 0.1(Vw)?
23: w:=w+aVw/,/g
24: Vw:=0

25: end if

26: until convergence is reached
Output: 7(W)

Obtained probability distribution 7(") represents sampling
strategy which incurs the minimum reconstruction MSE when
using the convex recovery method (T).

IV. NUMERICAL RESULTS

We now verify the effectiveness of the proposed sampling
set selection algorithm using synthetic data and compare it
to two other existing approaches, i.e., random walk sampling
(RWS) [13]] and uniform random sampling (URS) [14, Section
2.3]. We define a random graph with 10 clusters where sizes
of clusters are drawn from the geometric distribution with
probability of success 8/100. In accordance to the stochastic
block model (SBM) [15] intra- and inter-cluster connection
probabilities are parametrized as p = 7/10 and ¢ = 1/100.
We then generate a clustered graph signal according to (2) with
the signal coefficients ac, =1 for [ = 1,2, ..., 10. Example of
a typical instance of random graph with such parameters is
shown in Figure



Fig. 3: Data graph obtained from the stochastic block model
with p = 7/10 and ¢ = 1/100.

Probability
o S o
= El X}

o

=

=
T

Fig. 5: Mean policy for the stochastic block model family G.
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Fig. 4: Convergence of gradient MAB for one learning instance
G; (showing first 3700 episodes).

Given the model we generate training data consisting of
K = 500 random graphs and for each graph instance we
run Algorithm [I] for 10000 episodes, which is sufficient to
reach convergence. It is interesting to note that the algorithm
outperforms RWS and URS strategies after 200 and 800
episodes respectively (see Figure [). Convergence speed is
high at the initial stage and then substantially decreases after
approximately 1000 episodes.

In Figure [5] we illustrate the mean policy

w 1 E (w)
(w) _
T = : T, (@)

The finally obtained policy (@) is then evaluated by applying
it to 500 new i.i.d. realizations of the data graph, yielding
the sampling sets M, i = 1,...,500, and measuring the
normalized mean squared error (NMSE) incurred by graph
signal recovery from those sampling sets:
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Fig. 6: Test set error obtained from graph signal recovery based
on different sampling strategies.
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We perform similar measurements of the NMSE for ran-
dom walk and random sampling algorithms under different
sampling budgets and convert results to the logarithmic scale.

The Figure [6] shows that for relative sampling budget 0.2
improvement in NMSE amounts to 5 dBs in comparison to
random sampling and 10 dBs in comparison to random walk
approach. This gap increases even more for the sampling
budget 0.4, to 8 dBs and 20 dBs respectively. The general
tendency suggests further increase of the gap for larger sam-
pling budgets.

V. DISCUSSION

We now interpret the results and explain the poor perfor-
mance of RWS using a simple argument based on the proper-
ties of Markov chains. For simplicity we consider a graph with
clusters C; and Cy having sizes N7 and N,. The probability of
having an edge between nodes in the same cluster is denoted
p, while the probability of having an edge between nodes in



different clusters is ¢. An elementary calculation yields the
probability of a random walk transitioning from C; to Cy as:

_ qNa
qN2 +p(Ny — 1)

P12

Likewise, the probability of staying in the C;:
pi1=1-—pi2

We note that ¢V, is the expected number of edges between
a particular node of C; and Cy and p(N; — 1) is the expected
number of edges between a particular node of C; and the
remaining nodes of C;. Similarly for Cs:

D1 = N1

21 =
gN1 +p(N2 — 1)
P22 =1—par

The transition matrix of a Markov chain, which summarizes
probabilistic transitions between clusters, can be formalized as
follows:

P= {pn plﬂ

P21 P22
Let v = (v1,v2)” be an equilibrium distribution [16] of the
Markov chain which reflects amount of discrete time spent in
C;y and C,. According to theory of Markov chains [16] finding

this distribution amounts to finding a vector v such that:
vip=vT
U1 + v = 1 (5)
vy 20,02 20

It is easy to verify that solving the aforementioned system
(3) yields the following equilibrium distribution:

P21

V= ————, v =1-1
P12 + p21

We now consider particular example of a random graph with
the configuration: Ny = 20, No = 80,p = 0.7,q = 0.01. Ac-
cording to the presented above formulas, computations yield
equilibrium distribution: v; ~ 0.05, v ~ 0.95, which means
that 95 % of discrete time of a random walk is spent in Co
whereas only 5% of time is spent in C;. This rationale implies
that upon termination of a random walk instance its endpoints
will be located in clusters C; and Co with probabilities 0.05
and 0.95 respectively.

From the aforementioned examples we can conclude that
although Cs is only four times larger than C;, the probability
of random walk termination within it is larger by a factor
~ 19. Thus, the random walk sampling algorithm tends
to oversample larger clusters and undersample smaller ones.
This partially explains the poor performance of random walk
in comparison to random sampling which samples clusters
proportionally to their sizes.

VI. CONCLUSIONS

This paper proposes a novel approach for graph signal pro-
cessing which is based on interpreting graph signal sampling
and recovery as a reinforcement learning problem. Using the
lens of reinforcement learning lends naturally to an online
sampling strategy which is based on determining an optimal
policy which minimizes MSE of graph signal recovery. The
proposed approach has been tested on a synthetic dataset
generated in accordance to the stochastic block model. Ob-
tained experimental results have confirmed effectiveness of
the proposed sampling algorithm in the stochastic settings and
demonstrated its advantages over existing approaches.
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