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ABSTRACT
In this paper, we investigate the interference exploitation precoding
for multi-level modulations in the downlink multi-antenna systems.
We mathematically derive the optimal precoding structures based on
the Karush-Kuhn-Tucker (KKT) conditions. Furthermore, by for-
mulating the dual problem, the precoding problem for multi-level
modulations can be transformed into a pre-scaling operation using
quadratic programming (QP) optimization. Compared to the original
second-order cone programming (SOCP) formulation, this transfor-
mation that finally leads to a QP optimization allows a considerable
complexity reduction. Simulation results validate our derivations on
the optimal precoding structure, and demonstrate significant perfor-
mance improvements for interference exploitation precoding over
traditional precoding methods for multi-level modulations.

Index Terms— MIMO, constructive interference, symbol-level
precoding, optimization, Lagrangian.

1. INTRODUCTION

Precoding has been widely studied as a promising approach to sup-
port simultaneous multi-user data transmission in multi-antenna sys-
tems. Popular precoding approaches include theoretically capacity-
achieving dirty paper coding (DPC) [1], linear precoding such as
zero-forcing (ZF) and regularized ZF (RZF) [2], and non-linear pre-
coding such as Tomlinson-Harashima precoding (THP) [3] and vec-
tor perturbation (VP) precoding [4]. In addition, downlink precod-
ing based on convex optimization has also drawn increasing atten-
tion, among which the power minimization [5], [6] and signal-to-
interference-plus-noise ratio (SINR) balancing [7]-[9] have been the
most popular ones.

For the precoding methods that are described above, the channel
state information (CSI) is exploited to design the precoding strat-
egy that eliminates, avoids or limits interference. Nevertheless, the
above precoding schemes have ignored the fact that the information
of the data symbols can also be exploited for further performance
improvements, which is known as the interference exploitation pre-
coding [10]-[14]. It has been shown in [15], [16] that the instanta-
neous interference can be categorized into constructive interference
(CI) and destructive interference. More specifically, CI is defined
as the interference that pushes the received signals away from the
detection thresholds. In the literature, CI-based precoding has been
widely studied in the context of VP in [17], for PSK modulations in
[18]-[20], as well as for QAM modulations in [21]. More recently, a
sub-optimal closed-form CI precoder has been introduced in [22] for
power minimization, and an optimal precoding structure for max-
min CI precoding has been revealed in [23] for PSK modulations.
Nevertheless, the extension of the results in [23] to multi-level mod-
ulations such as QAM is not trivial, due to the fact that 1) only the

outer constellation points can exploit CI, which leads to a different
problem formulation, and 2) the phase-rotation CI metric for PSK
modulations is not applicable to QAM constellations.

Therefore in this paper, we focus on the interference exploitation
precoding for multi-level modulations in the downlink multi-user
multiple-input single-output (MU-MISO) system, where we con-
sider QAM as a representative multi-level modulation type. We
propose to maximize the CI effect for the outer constellation points
while maintaining the performance for the inner constellations points
that cannot exploit CI, which leads to a second-order cone program-
ming (SOCP) formulation. By analyzing the optimization problem
with Karush-Kuhn-Tucker (KKT) conditions, we derive the optimal
precoding structure as a function of the pre-scaling vector, and obtain
an equivalent optimization on the pre-scaling vector. By further for-
mulating the dual of the equivalent optimization, we finally arrive at
an equivalent quadratic programming (QP) formulation, which en-
joys a reduced computational cost compared to the original SOCP
formulation. Simulation results validate our transformations, and
demonstrate remarkable performance improvements of CI precoding
over traditional precoding approaches for multi-level modulations as
well, as opposed to conventional sense that CI precoding is mostly
effective for PSK modulations.

Notations: a, a, and A denote scalar, column vector and matrix,
respectively. (·)∗, (·)T , (·)H , and (·)−1 denote conjugate, transposi-
tion, conjugate transposition, and inverse, respectively. < and= take
the real and imaginary part, respectively, and j is the imaginary unit.
diag (·) is the transformation of a column vector into a diagonal ma-
trix, and ⊗ is the Kronecker product. Cn×n andRn×n represent an
n× n matrix in the complex and real set, respectively. card {·} re-
turns the cardinality of a set. IK denotes the K×K identity matrix,
and ei represents the i-th column of the identity matrix.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We study a downlink MU-MISO system, where the BS with Nt
transmit antennas communicates withK single-antenna users simul-
taneously, where K ≤ Nt. The data symbol vector is assumed to be
from a normalized QAM constellation, denoted as s ∈ CK×1. The
received signal at user k can then be expressed as

rk = hTkWs + nk, ∀k ∈ K, (1)

where K = {1, 2, · · · ,K}, hk ∈ CNt×1 denotes the flat-fading
Rayleigh channel vector with each entry following the standard com-
plex Gaussian distribution, W ∈ CNt×K is the precoding matrix,
and nk is the additive Gaussian noise at the receiver with zero mean
and variance σ2. As we focus on the analytical precoding structure
for CI precoding, perfect CSI is assumed throughout this paper.



It is known that the conventional phase-rotation CI metric intro-
duced in [18] is not applicable to QAM constellation [21]. There-
fore, we employ the symbol-scaling CI metric [17], [24], where we
first decompose each constellation point along their detection thresh-
old, expressed as

sk = sAk + sBk , (2)
where sAk and sBk are the bases that are parallel to the detection
thresholds. Specifically for QAM, we further obtain

sAk = <{sk} = s<k , s
B
k = j · = {sk} = s=k . (3)

For a generic expression of sAk and sBk forM-PSK modulations, we
refer the interested readers to [25], where we note that the decompo-
sition of QAM is equivalent to that of QPSK. We further decompose
each received signal along the detection threshold, given by

hTkWs = αAk s
A
k + αBk s

B
k , (4)

where αAk ≥ 0 and αBk ≥ 0 are two introduced real scalars that
represent the effect of interference.

For multi-level modulations such as QAM, CI can only be ex-
ploited by the outer constellation points, while all the interference
for the inner constellation points is destructive. To be more specific,
when QAM modulation is considered, as shown in Fig. 1 below
where we employ the 1st quadrant of a 16QAM constellation as an
example, CI can only be exploited by the real part of the constella-
tion point ‘B’, the imaginary part of ‘C’, and both real and imaginary
part of ‘D’, respectively. Therefore, we propose to maximize the CI
effect for the outer constellation points while maintaining the perfor-
mance for the inner constellation points, and by further expressing

Ωk =
[
αAk , α

B
k

]T
, sk =

[
sAk , s

B
k

]T
, (5)

the optimization problem can be constructed as

P1 : max
W, t

t

s.t. C1 : hTkWs = ΩT
k sk, ∀k ∈ K, C2 : t ≤ αOm, ∀αOm ∈ O

C3 : t = αIn, ∀αIn ∈ I, C4 : ‖Ws‖22 ≤ p0
(6)

where O consists of the real scalars corresponding to the real or
imaginary part of outer constellation points that can exploit CI, while
I consists of the real scalars corresponding to the real or imaginary
part of outer constellation points that cannot exploit CI. Accordingly,
we obtain

O ∪ I =
{
αA1 , α

B
1 , α

A
2 , α

B
2 , · · · , αAK , αBK

}
. (7)

Fig. 1. The symbol-scaling metric for 16QAM

P1 belongs to the SOCP optimization, and can be solved via existing
convex optimization tools.

3. INTERFERENCE EXPLOITATION PRECODING

Before we present our analysis, we first note that Ws can be viewed
as a single vector inP1, and accordingly how the power is distributed
among each wisi does not affect the optimal solution. Therefore
without loss of generality, it is safe to assume that each wisi is iden-
tical when optimality is achieved, and the power constraint can be
equivalently transformed into [23]

‖Ws‖22 ≤ p0 ⇒
K∑
i=1

s∗iw
H
i wisi ≤

p0
K
. (8)

We further express P1 in a standard minimization form as

P2 : min
W, t

− t

s.t. C1 : hTk

K∑
i=1

wisi −ΩT
k sk = 0, ∀k ∈ K

C2 : t− αOm ≤ 0, ∀αOm ∈ O, C3 : t− αIn = 0, ∀αIn ∈ I

C4 :

K∑
i=1

s∗iw
H
i wisi ≤

p0
K

(9)
Accordingly, the Lagrangian of P2 is expressed as [26]

L (wi, t, δk, κm, τn, δ0) = −t+
K∑
k=1

δk

(
hTk

K∑
i=1

wisi −ΩT
k sk

)

+

card{O}∑
m=1

κm
(
t− αOm

)
+

card{I}∑
n=1

τn
(
t− αIn

)
+ δ0

(
K∑
i=1

s∗iw
H
i wisi −

p0
K

)
,

(10)
where δk, κm, τn and δ0 are the introduced dual variables, δ0 ≥ 0,
and κm ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}. The KKT conditions
can be further expressed as

∂L
∂t

= −1 +
card{O}∑
m=1

κm +

card{I}∑
n=1

τn = 0 (11a)

∂L
∂wi

=

(
K∑
k=1

δk · hTk

)
si + δ0sis

∗
i ·wH

i = 0, ∀i ∈ K (11b)

hTk

K∑
i=1

wisi −ΩT
k sk = 0, ∀k ∈ K (11c)

κm
(
t− αOm

)
= 0, ∀αOm ∈ O (11d)

t− αIn = 0, ∀αIn ∈ I (11e)

δ0

(
K∑
i=1

s∗iw
H
i wisi −

p0
K

)
= 0 (11f)

We first obtain that δ0 6= 0 based on (11b), which further means that
‖Ws‖22 = p0 when optimality is achieved. Based on (11b), we can
further express wi as

wH
i = − si

δ0sis∗i

(
K∑
k=1

δk · hTk

)
= − 1

s∗i

(
K∑
k=1

δk
δ0
· hTk

)
. (12)



By introducing ϑk = − δ
H
k
δ0

, we can further express wi as

wi =

(
K∑
k=1

ϑk · h∗k

)
1

si
, ∀i ∈ K. (13)

It is easy to verify that the expression of wi in (13) is consistent with
our premise that each wisi is identical. Based on (13), we express
the precoding matrix as

W = [w1,w2, · · · ,wK ]

= [h∗1,h
∗
2, · · · ,h∗K ] [ϑ1, ϑ2, · · · , ϑK ]T

[
1

s1
,
1

s2
, · · · , 1

sK

]
= HHΥŝT ,

(14)
where we have introduced

Υ = [ϑ1, ϑ2, · · · , ϑK ]T , ŝ =

[
1

s1
,
1

s2
, · · · , 1

sK

]T
. (15)

We further express (4) in a matrix form, given by

HWs =
[
ΩT

1 s1,Ω
T
2 s2, · · · ,ΩT

KsK
]T

= Udiag (Ω) sE, (16)

where U ∈ RK×2K = IK ⊗ [1, 1], and the pre-scaling vector
Ω ∈ R2K×1 as well as the expanded symbol vector sE ∈ R2K×1

is given by

Ω =
[
αA1 , α

B
1 , · · · , αAK , αBK

]T
=
[
αE1 , α

E
2 , · · · , αE2K−1, α

E
2K

]T
,

sE =
[
sA1 , s

B
1 , · · · , sAK , sBK

]T
=
[
sE1 , s

E
2 , · · · , sE2K−1, s

E
2K

]T
.

(17)
Then, by substituting the precoding matrix W in (14) into (17), we
obtain the expression of Υ as

HHHΥŝT s = Udiag (Ω) sE

⇒Υ =
1

K
·
(
HHH

)−1

Udiag (Ω) sE,
(18)

which further leads to the expression of the precoding matrix W as
a function of the pre-scaling vector Ω as

W =
1

K
·HH

(
HHH

)−1

Udiag (Ω) sEŝT . (19)

Subsequently, we substitute W obtained in (19) into the power con-
straint in P1, and we obtain

‖Ws‖22 = p0 ⇒ sHE diag (Ω)UH
(
HHH

)−1

Udiag (Ω) sE = p0

⇒ ΩT diag
(
sHE

)
UH

(
HHH

)−1

Udiag (sE)︸ ︷︷ ︸
T

Ω = p0,

(20)
where we note sH ŝ∗ = ŝT s = K. With T being symmetric and
positive semi-definite and Ω being real, (20) is equivalent to

ΩTTΩ = p0 ⇒ ΩT<{T}Ω = p0 ⇒ ΩTVΩ = p0, (21)

based on which we can construct an optimization on Ω, given by

P3 : min
Ω, t

− t

s.t. C1 : ΩTVΩ− p0 = 0, C2 : t− αOm ≤ 0, ∀αOm ∈ O

C3 : t− αIn = 0, ∀αIn ∈ I
(22)

The optimal precoding matrix can then be obtained by substituting
the optimal Ω from P3 into (19).

We further analyze P3 and derive the optimal precoding struc-
ture as a function of the dual variables of P3. The Lagrangian of P3

is formulated as

L
(
Ω, t, δ̃0, µm, νn

)
= −t+ δ̃0

(
ΩTVΩ− p0

)
+

card{O}∑
m=1

µm
(
t− αOm

)
+

card{I}∑
n=1

νn
(
t− αIn

)
,

(23)

where µm ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}. To derive a closed-
form expression, we re-order the columns and rows of the matrices
and vectors included in (23). To be more specific, we first re-order
the expanded symbol vector sE into

sE ⇒ s̃E =
[
s̃TO, s̃

T
I

]T
, (24)

where the entries in s̃O ∈ Rcard{O}×1 correspond to the real and
imaginary part of the data symbols that can be scaled, while s̃I ∈
Rcard{I}×1 corresponds to the symbol vector that cannot exploit
CI. s̃O and s̃I are given by

s̃O =
[
s̃1, · · · , s̃card{O}

]T
, s̃I =

[
s̃card{O}+1, · · · , s̃2K

]T
,

(25)
The pre-scaling vector Ω is accordingly re-ordered into

Ω ⇒ Ω̃ =
[
Ω̃T
O, Ω̃

T
I

]T
, (26)

where Ω̃O ∈ Rcard{O}×1 and Ω̃I ∈ Rcard{I}×1 are given by

Ω̃O =
[
α̃1, · · · , α̃card{O}

]T
, Ω̃I =

[
α̃card{O}+1, · · · , α̃2K

]T
.

(27)
We further introduce a Locater function that returns the index of s̃m
in the original expanded symbol vector sE, given by

L (s̃m) = k, if s̃m = sEk . (28)

We can then express s̃E and Ω̃ as a linear transformation of sE and
Ω, given by

s̃E = FsE, Ω̃ = FΩ, (29)

where the transformation matrix F ∈ R2K×2K is given by

F =
[
eL(s̃1), eL(s̃2), · · · , eL(s̃2K)

]T
, (30)

where we note that F is invertible. Similarly, the coefficient matrix
V is accordingly re-ordered into

Ṽ = FVFT , (31)

where the multiplication of F at the left side and FT at the right side
correspond to the row and column reordering, respectively. Based on
the above transformations, the Lagrangian in (23) can be simplified
into

L
(
Ω̃, t, δ̃0, ũ

)
=
(
1T ũ− 1

)
t+δ̃0·Ω̃T ṼΩ̃−ũT Ω̃−δ̃0p0, (32)

where 1 = [1, 1, · · · , 1]T ∈ R2K×1 and the dual vector ũ ∈
R2K×1 is given by

ũ =
[
µ̃1, µ̃2, · · · , µ̃card{O}, ν̃1, ν̃2, · · · , ν̃card{I}

]T
. (33)



The KKT conditions for P3 can then expressed as

∂L
∂t

= 1T ũ− 1 = 0 (34a)

∂L
∂Ω̃

= δ̃0 ·
(
Ṽ + ṼT

)
Ω̃− ũ = 0 (34b)

Ω̃T ṼΩ̃− p0 = 0 (34c)
µ̃m (t− α̃m) = 0, ∀m ∈ {1, 2, · · · , card {O}} (34d)

t− α̃n = 0, ∀n ∈ {card {I}+ 1, · · · , 2K} (34e)

Based on (34b), we obtain the expression of Ω̃ as

Ω̃ =
1

2δ̃0
· Ṽ−1ũ. (35)

By substituting the expression of Ω̃ into the power constraint, we
further obtain the expression of δ̃0 as(

1

2δ̃0
· Ṽ−1ũ

)T
Ṽ−1

(
1

2δ̃0
· Ṽ−1ũ

)
= p0

⇒ 1

4δ̃20
· ũT Ṽ−1ṼṼ−1ũ = p0

⇒ δ̃0 =

√
ũT Ṽ−1ũ

4p0
.

(36)

For P3, it is easy to observe that the Slater’s condition is satisfied
[26], and therefore P3 can be optimally solved by solving its dual
problem, which is constructed as

P4 : D = max
ũ,δ̃0

min
Ω̃,t
L
(
ũ, δ̃0, Ω̃, t

)
. (37)

The inner minimization ofP4 is achieved with (34a) and (35), which
leads to

D = max
ũ,δ̃0

δ̃0 · Ω̃T ṼΩ̃ + ũT Ω̃− δ̃0p0

= max
ũ,δ̃0

δ̃0

4δ̃20
· ũT Ṽ−1ṼṼ−1ũ− 1

2δ̃0
ũT Ṽ−1ũ− δ̃0p0

= max
ũ
− ũT Ṽ−1ũ

4
√

ũT Ṽ−1ũ
4p0

−

√
ũT Ṽ−1ũ

4p0
· p0

= max
ũ
−
√
p0 · ũT Ṽ−1ũ

= min
ũ

ũT Ṽ−1ũ,

(38)

and accordingly the dual problem is equivalent to

P5 : min
ũ

ũT Ṽ−1ũ

s.t. C1 : 1T ũ− 1 = 0

C2 : µ̃m ≥ 0, ∀m ∈ {1, 2, · · · , card {O}}

(39)

which is a QP optimization and can be much more efficiently solved
than the original SOCP formulation P1. Moreover, based on (35)
and (36), we obtain a closed-form expression of the optimal precod-
ing matrix as a function of the dual vector ũ, given by

W =

1

K
·HH

(
HHH

)−1

Udiag

(√
p0

uT1 Ṽ−1u1

F−1Ṽ−1u1

)
sEŝT ,

(40)
with F given in (30).
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Fig. 2. BER v.s. SNR, K = Nt = 8 and K = Nt = 12, 16QAM
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4. NUMERICAL RESULTS

We compare our QP-based CI precoding with traditional SOCP-
based CI precoding as well as other linear ZF and RZF precoding
schemes [2] based on Monte Carlo simulations. We assume p0 = 1,
and the transmit SNR per antenna as ρ = 1

/
σ2.

In Fig. 2 and Fig. 3, we present the bit error rate (BER) results of
CI precoding for 16QAM and 64QAM, respectively. In both figures,
we observe that the QP-based CI precoding well matches the origi-
nal SOCP-based CI precoding, which validates the effectiveness of
our derivations. Moreover, for both modulations, considerable per-
formance improvements are observed for CI-based precoding over
traditional ZF and RZF precoding schemes in the medium-to-high
SNR regime. An important observation is that, as opposed to con-
ventional sense that CI precoding is mostly effective for PSK modu-
lations, we show that the performance gains can be as large as 10dB
for 16QAM and 5dB for 64QAM.

5. CONCLUSIONS

In this paper, we study the interference exploitation precoding for
multi-level modulations. By analyzing the optimization problem
with KKT conditions and by formulating the dual problem, it is re-
vealed that CI precoding is equivalent to a QP formulation, and we
derive the optimal closed-form precoding matrix as a function of the
dual vector of the QP optimization. Our derivations have been val-
idated by the numerical results, which also demonstrate significant
performance improvements for interference exploitation precoding
over conventional linear precoding schemes.
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