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ABSTRACT

Coded computation techniques provide robustness against

straggling servers in distributed computing, with the follow-

ing limitations: First, they increase decoding complexity.

Second, they ignore computations carried out by straggling

servers; and they are typically designed to recover the full

gradient, and thus, cannot provide a balance between the

accuracy of the gradient and per-iteration completion time.

Here we introduce a hybrid approach, called coded partial

gradient computation (CPGC), that benefits from the advan-

tages of both coded and uncoded computation schemes, and

reduces both the computation time and decoding complexity.

Index Terms— Gradient descent, coded computation,

maximum distance separable (MDS) codes, LT codes.

1. INTRODUCTION

In many machine learning applications, the principal com-

putational task boils down to a matrix-vector multiplica-

tion. Consider, for example, the minimization of the em-

pirical mean squared error in linear regression L(θ) ,
1

2N

∑N
i=1(yi − xT

i
θ)2, where x1, . . . , xN ∈ RL are the data

points with the corresponding labels y1, . . . , yN ∈ R, and

θ ∈ RL is the parameter vector. The optimal parameter

vector can be obtained iteratively by gradient descent (GD):

θt+1 = θ t − ηt∇θL(θt ), where ηt is the learning rate and

θt is the parameter vector at the tth iteration. We have

∇θL(θt) = XTXθt − XTy, where X = [x1, . . . , xN ]
T and

y = [y1, . . . , yN ]
T . In the gradient expression, only θ t

changes over the iterations; hence, the key computational

task at each iteration is the matrix-vector multiplication Wθ t ,

where W , XTX ∈ RL×L. To speed up GD, execution of

this multiplication can be distributed to K worker servers,

by simply dividing W into K equal-size disjoint submatrices.

However, the computation time will now be limited by the

straggling workers.

Coded distributed computation has been introduced to

tolerate straggling workers by introducing redundant com-

putations [1–9]. Maximum distance separable (MDS) codes

are used in [1], where matrix W ∈ RL×L is divided into M

disjoint submatrices, W1, . . . ,WM ∈ Rr×L, which are then

encoded with an (M,K) MDS code, and each coded subma-

trix is assigned to a different worker. Each worker multiplies

θt with the coded submatrix assigned to it, and sends the

result to the master, which can recover Wθt having received

the results from any M workers. Up to K − M stragglers

can be tolerated at the expense of increasing the computation

load of each worker by r = L/M [1]. Alternatively, uncoded

computations can be executed, and the results can be send

as a coded messages [10–12]. However, these approaches

completely discard computations carried out by straggling

servers, and hence, the overall computational capacity is

underutilized.

Alternatively, workers can be allowed to send multiple

messages to the master per-iteration, corresponding to partial

computations [2,5,8,13], which will be called multi-message

communication (MMC). In [2] MMC is applied to MDS-

coded computation utilizing the statistics of stragglers. In-

stead, rateless codes are proposed in [8] as they do not require

the knowledge of the straggler statistics, and also reduce the

decoding complexity. However, rateless codes come with an

overhead, which vanishes only if the number of codewords

goes to infinity. This, in turn, would increase the number of

read/write operations at the master at each iteration, limiting

the practicality in real applications.

Uncoded distributed computation with MMC (UC-MMC)

is introduced in [5,13,14], and is shown to outperform coded

computation in terms of average completion time, conclud-

ing that coded computation is more effective against persis-

tent stragglers, and particularly when full gradient is required

at each iteration. Coded GD strategies are mainly designed

for full gradient computation; and hence, the master needs to

wait until all the gradients can be recovered. UC-MMC, on

the other hand, in addition to exploiting partial computations

performed by straggling servers, also allows the master to up-

date the parameter vector with only a subset of the gradient

computations to limit the per iteration completion time.

In this paper, we introduce a novel hybrid scheme, called

coded partial gradient computation (CPGC), that brings to-

gether the advantages of uncoded computation, such as low

decoding complexity and partial gradient updates, with those

of coded computation, such as reduced per-iteration comple-

tion time and limited communication load. Before presenting
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cumulative computation type MCC UC-MMC CPGC

N1 : N2 = 4, N1 = 0, N0 = 0 1 1 1

N2 : N2 = 3, N1 = 1, N0 = 0 4 4 4

N3 : N2 = 3, N1 = 0, N0 = 1 4 4 4

N4 : N2 = 2, N1 = 2, N0 = 0 6 6 6

N5 : N2 = 2, N1 = 1, N0 = 1 12 8 12

N6 : N2 = 2, N1 = 0, N0 = 2 6 2 6

N7 : N2 = 1, N1 = 3, N0 = 0 0 4 4

N8 : N2 = 1, N1 = 2, N0 = 1 0 4 8

N9 : N2 = 0, N1 = 4, N0 = 1 0 1 1

Table 1: Number of score vectors for full gradient.

the design principles of this scheme, we will briefly outline

its advantages on a simple motivating example.

2. MOTIVATING EXAMPLE

Consider M = 4 computation tasks, represented by subma-

trices W1, . . . ,W4, which are to be executed across K = 4

workers, each with a maximum computation load of r = 2;

that is, each worker can perform up to 2 computations, due to

storage or computation capacity limitations. Let us first con-

sider two known distributed computation schemes, namely

UC-MMC [5, 13] and MDS-coded computation (MCC) [1].

For each scheme, the r × K computation scheduling ma-

trix, A, shows the assigned computation tasks to each worker

with their execution order. More specifically, A(i, j) denotes

the ith computation task to be executed by the jth worker. In

MCC, linearly independent coded computation tasks are dis-

tributed to the workers as follows:

Am =

[
W1 +W3 W1 + 2W3 W1 + 4W3 W1 + 8W3

W2 +W4 W2 + 2W4 W2 + 4W4 W2 + 8W4

]
.

Each worker sends the results of its computations only after

all of them are completed, i.e., first worker sends the concate-

nation [(W1 +W3)θt (W2 +W4)θt ] after completing both

computations; therefore, any permutations of each column

vector would result in the same performance. Am corresponds

to a (2, 4) MDS code, and hence, the master can recover the

full gradient computation from the results of any two workers.

In the UC-MMC scheme with a shifted computation

schedule [5], computation scheduling matrix is given by

Au =

[
W1 W2 W3 W4

W2 W3 W4 W1

]
,

and each worker sends the results of its computations sequen-

tially, as soon as each of them is completed. This helps to

reduce the per-iteration completion time with an increase in

the communication load [5,13]. With UC-MMC, full gradient

can be recovered even if each worker performs only one com-

putation, which is faster if the workers have similar speeds.

The computation scheduling matrix of CPGC is given by

Ac =

[
W1 W2 W3 W4

W3 +W4 W1 +W3 W2 +W4 W1 +W2

]
.

cumulative computation type MCC UC-MMC CPGC

N1 : N2 = 4, N1 = 0, N0 = 0 1 1 1

N2 : N2 = 3, N1 = 1, N0 = 0 4 4 4

N3 : N2 = 3, N1 = 0, N0 = 1 4 4 4

N4 : N2 = 2, N1 = 2, N0 = 0 6 6 6

N5 : N2 = 2, N1 = 1, N0 = 1 12 12 12

N6 : N2 = 2, N1 = 0, N0 = 2 6 6 6

N7 : N2 = 1, N1 = 3, N0 = 0 0 4 4

N8 : N2 = 1, N1 = 2, N0 = 1 0 12 12

N9 : N2 = 1, N1 = 1, N0 = 2 0 8 8

N10 : N2 = 0, N1 = 4, N0 = 0 0 1 1

N11 : N2 = 0, N1 = 3, N0 = 1 0 4 4

Table 2: Number of score vectors for partial gradient.

2.1. Full Gradient Performance

Now, let us focus on a particular iteration, and let Ns denote

the number of workers that have completed exactly s compu-

tations by time t, s = 0, . . . , r. We define N , (N0, . . . , Nr )

as the cumulative computation type. Additionally, we intro-

duce the K-dimensional score vector C = [c1, . . . , cK ], where

ci denotes the number of computations completed by the ith

worker. For each scheme, the number of distinct score vectors

with the same cumulative computation type, which allow the

recovery of full gradient is listed in Table 1. Particularly strik-

ing are the last three rows that correspond to cases with very

few computations completed, i.e., when at most one worker

completes all its assigned tasks. In these cases, CPGC is much

more likely to allow full gradient computation; and hence, the

computation deadline can be reduced significantly while still

recovering the full gradient.

Next, we analyze the probability of each type under a spe-

cific computation time statistics. We adopt the model in [15],

where the probability of completing exactly s computations

by time t, Ps(t), is given by

Ps(t) =




0, if t < sα,

1 − e−µ(
t

s
−α), sα ≤ t < (s + 1)α,

e−µ(
t

s+1
−α) − e−µ(

t

s
−α) (s + 1)α < t,

(1)

where α is the minimum required time to finish a computation

task, and µ is the average number of computations completed

in unit time. The probability of cumulative computation type

N(t) at time t is given by Pr(N(t)) =
∏r

s=0 Ps(t)
Ns . Let T

denote the full gradient recovery time. Accordingly, Pr(T < t)

for CPGC is given by

Pr(N1(t)) + 4Pr(N2(t)) + 4Pr(N3(t)) + 6Pr(N4(t)) + 12Pr(N5(t))

+ 6Pr(N6(t)) + 4Pr(N7(t)) + 8Pr(N8(t)) + Pr(N9(t)) (2)

where the types N1, . . . ,N9 are as listed in Table 1. Pr(T < t)

for MCC and UC-MMC can be written similarly. Then, one

can observe that, for any t, CPGC has the highest Pr(T <

t); and hence, the minimum average per-iteration completion

time E[T ]. In the next subsection, we will highlight the partial

recoverability property of CPGC.



2.2. Partial Gradient Performance

It is known that stochastic GD can still guarantee convergence

even if each iteration is completed with only a subset of the

gradient computations [16,17]. In our example, with three out

of four gradients, sufficient accuracy may be achieved at each

iteration, particularly if the straggling server is varying over

iterations. The number of score vectors for which a partial

gradient (with at least three gradient computations) can be re-

covered are given in Table 2. We observe that when three

gradients are sufficient to complete an iteration UC-MMC

and CPGC have the same average completion time statistics.

Hence, CPGC can provide a lower average per-iteration com-

pletion time for full gradient computation compared to UC-

MMC, while achieving the same performance when partial

gradients are allowed.

3. DESIGN PRINCIPLES OF CPGC

In [8], LT codes are proposed for distributed computation in

order to exploit MMC with coded computations. However,

LT codes come with a trade-off between the overhead and the

associated coding/decoding complexity. Moreover, the origi-

nal design in [8] does not allow partial gradient recovery.

The key design issue in an LT code is the degree dis-

tribution P(d). Degree of a codeword, d, chosen randomly

from P(d), defines the number of symbols (Wi submatrices

in our setting) that are used in generating a codeword. Then,

d symbols are chosen randomly to form a codeword. The de-

gree distribution plays an important role in the performance

of an LT code, and the main challenge is to find the opti-

mal degree distribution. Codewords with smaller degrees re-

duce decoding complexity; however, having many codewords

with smaller degrees increases the probability of linear depen-

dence among codewords. We also note that, LT code design is

based on the assumption that the erasure probability of differ-

ent codewords are identical and independent from each other.

However, in a coded computing scenario, the computational

tasks, each of which corresponding to a distinct codeword,

are executed sequentially; thus, erasure probabilities of code-

words are neither identical nor independent. Codewords must

be designed taking into account their execution orders in order

to prevent overlaps and to minimize the average completion

time. This is the main intuition behind the CPGC scheme,

and guides the design of the computation scheduling matrix.

3.1. Degree Limitation

To allow partial gradient computation at the master, we limit

the degree of all codewords by two; that is, each codeword

(i.e., coded submatrix) is the sum of at most two submatrices.

Moreover, the first computation task assigned to each worker

corresponds to a codeword with degree one (i.e., a Wi subma-

trix is assigned to each worker without any coding), while all

other tasks correspond to codewords with degree two (coded

submatrices). Recall that, due to the straggling behavior, the

first task at each worker has the highest completion probabil-

ity, thus assigning uncoded submatrices as the first computa-

tion task at each worker helps to enable partial recovery.

3.2. Coded Data Generation

In an LT code, symbols (submatrices) that are linearly com-

bined to generate a codeword are chosen randomly; however,

to enable partial gradient recovery, we carefully design the

codewords for each worker.

For a given set of submatrices W, a partition P is a

grouping of its elements into nonempty disjoint subsets.

In our example, we have W = {W1,W2,W3,W4}, and

P = {{W1,W2} , {W3,W4}} is a partition. Now, consider

the following scheme: for each Q ∈ P, a codeword c(Q) is

generated by
∑

W′∈Q W′. Since for any Qi,Q j ∈ P, i , j,

Qi ∩ Q j = ∅, codewords c(Qi) and c(Q j ) share no common

submatrix. Accordingly, one can easily observe that if n parti-

tions are used to generate coded submatrices, each submatrix

Wi appears in exactly n different coded submatrices. In order

to generate degree-two codewords, we use partitions with

subsets of size two; and hence, exactly K/2 coded submatri-

ces are generated from a single partition. Therefore, for each

row of the computation scheduling matrix we need exactly

two partitions of W, and in total we require 2(r − 1) distinct

partitions (see [18] for details).

Note that the probability of not receiving the results of

computations corresponding to coded submatrices in the same

column of the computation scheduling matrix are correlated,

as they are executed by the same worker. Hence, in order to

minimize the dependence on a single worker, we would like

to limit the appearance of a submatrix in any single column

of the computation scheduling matrix. In the next section, we

provide a heuristic strategy for coded submatrix assignment.

4. NUMERICAL RESULTS AND CONCLUSIONS

We will analyze and compare the performance of three

schemes, UC-MMC, CPGC and MCC, in terms of three

performance measures, the average per-iteration completion

time, communication load and the communication volume.

The communication load, defined in [5, 13], refers to the av-

erage number of messages transmitted to the master from the

workers per iteration, whereas the communication volume

refers to the average total size of the computations sent to

the master per iteration. This is normalized with respect to

the result of Wθ, which is set as the unit data volume. This

is to distinguish between the partial and full computation

results sent from the workers in CPGC and MCC schemes,

respectively. In CPGC we transmit many messages of smaller

size, while MCC sends a single message consisting of mul-

tiple results. Communication volume allows us to compare

the amount of redundant computations sent from the work-
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(a) Average per-iteration time comparison.
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(b) Communication volume comparison.
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(c) Communication load comparison.

Fig. 1: Performance comparison of UC-MCC, CPGC and MCC schemes for M = K = 20 and r = 3

ers to the master. A communication volume of 1 implies

zero communication overhead, whereas a communication

volume larger than 1 implies communication overhead due to

transmission of multiple messages.

4.1. Simulation Setup

We consider K = 20 workers and M = 20 computation tasks

(submatrices), and a computation load of r = 3. We set µ =

10 and α = 0.01 for the statistics of computation speed in (1).

In CPGC, first computations assigned to the workers are

uncoded submatrices. For the second and third rows of the

computation scheduling matrix we use four different parti-

tions with the coded submatrices as follows (assuming N is

even):

v1 =[W1 +W2, . . . ,Wn +Wn+1, . . . ,WN−1 +WN ]

v2 =[W1 +W3, . . . ,Wn +Wn+2, . . . ,WN−2 +WN ]

v3 =[W1 +WN, . . . ,Wn +WN−n+1, . . . ,WN/2 +WN/2+1]

v4 =[W1 +WN/2+1, . . . ,Wn +WN/2+n, . . . ,WN/2 +WN ]

These coded submatrices are used to form a computation

scheduling matrix in the following way: A(2, 1 : K/2) =

circshift(v1;−1), A(2,K/2 + 1 : K) = circshift(v2;−1),

A(3, 1 : K/2) = circshift(v3; 1), A(3,K/2 + 1 : K) =

circshift(v4;−2), where circshift is the circular shift oper-

ator, i.e., circshift(v; d) is the d times right shifted version of

vector v. We use the shifted version of the vectors to prevent

multiple appearance of a submatrix in a single column.

4.2. Results

For M submatrices, let M ′ be the required number of com-

putations, each corresponding to a different submatrix, to ter-

minate an iteration. We define M−M′

M
as the tolerance rate,

which reflects the gradient accuracy at each iteration (lower

tolerance rate means higher accuracy).

In Fig. 1, we compare the three schemes under the three

performance metrics with respect to the tolerance rate. Since

partial recovery is not possible with MDS-coded computa-

tion, its performance remains the same with the tolerance

level. The performance of the UC-MMC and CPGC schemes

improve with the increasing tolerance level. This comes at the

expense of a slight reduction in the accuracy of the resultant

gradient computation. We remark that, beyond a certain tol-

erance level UC-MMC scheme achieves a lower average per

iteration completion time compared to MCC due to the uti-

lization of non-persistent stragglers thanks to the MMC ap-

proach [5, 13]. Also, CPGC outperforms both UC-MMC and

MCC thanks to coded inputs. It also allows partial gradient

computation, and provides approximately 25% reduction in

the average per iteration completion time compared to MCC

and UC-MMC at a 5% tolerance rate.

Communication volume of the UC-MMC scheme for 0%

tolerance rate is around 1.8, which means that there is 80%

communication overhead. Similarly, the communication vol-

ume of CPGC is around 1.5, which means a 50% overhead.

MCC has the minimum communication volume since the

MDS code has zero decoding overhead1. We also observe

that the communication volume of CPGC decreases with the

tolerance level, and it is close to that of MCC at a tolerance

level of around 10%.

We recall that the design goal of the CPGC scheme is to

provide flexibility in seeking a balance between the per iter-

ation completion time and accuracy. To this end, different it-

eration termination strategies can be introduced to reduce the

overall convergence time. We show in [18] that a faster over-

all convergence can be achieved with CPGC by increasing

the tolerance at each iteration, as this would reduce the per-

iteration completion time. Finally, one can observe from Fig.

(1b) and (1c) that the MMC approach affects the communi-

cation load more drastically compared to the communication

volume. This may introduce additional delays depending on

the computing infrastructure and the communication protocol

employed, e.g., dedicated links from the workers to the master

compared to a shared communication network.

1Communication volume of the MCC is slightly greater than 1 since K is

not divisible by r , and zero padding is used before encoding.
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